AkashKhatri commited on
Commit
5b4ed07
·
verified ·
1 Parent(s): 6759ed7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +86 -60
app.py CHANGED
@@ -1,64 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
- # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
-
10
-
11
- def respond(
12
- message,
13
- history: list[tuple[str, str]],
14
- system_message,
15
- max_tokens,
16
- temperature,
17
- top_p,
18
- ):
19
- messages = [{"role": "system", "content": system_message}]
20
-
21
- for val in history:
22
- if val[0]:
23
- messages.append({"role": "user", "content": val[0]})
24
- if val[1]:
25
- messages.append({"role": "assistant", "content": val[1]})
26
-
27
- messages.append({"role": "user", "content": message})
28
-
29
- response = ""
30
-
31
- for message in client.chat_completion(
32
- messages,
33
- max_tokens=max_tokens,
34
- stream=True,
35
- temperature=temperature,
36
- top_p=top_p,
37
- ):
38
- token = message.choices[0].delta.content
39
-
40
- response += token
41
- yield response
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
62
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ # import gradio as gr
2
+ # from huggingface_hub import InferenceClient
3
+
4
+ # """
5
+ # For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
+ # """
7
+ # client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
+ # # client = InferenceClient("meta-llama/Llama-2-7b-hf")
9
+
10
+
11
+ # def respond(
12
+ # message,
13
+ # history: list[tuple[str, str]],
14
+ # system_message,
15
+ # max_tokens,
16
+ # temperature,
17
+ # top_p,
18
+ # ):
19
+ # messages = [{"role": "system", "content": system_message}]
20
+
21
+ # for val in history:
22
+ # if val[0]:
23
+ # messages.append({"role": "user", "content": val[0]})
24
+ # if val[1]:
25
+ # messages.append({"role": "assistant", "content": val[1]})
26
+
27
+ # messages.append({"role": "user", "content": message})
28
+
29
+ # response = ""
30
+
31
+ # for message in client.chat_completion(
32
+ # messages,
33
+ # max_tokens=max_tokens,
34
+ # stream=True,
35
+ # temperature=temperature,
36
+ # top_p=top_p,
37
+ # ):
38
+ # token = message.choices[0].delta.content
39
+
40
+ # response += token
41
+ # yield response
42
+
43
+ # """
44
+ # For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
+ # """
46
+ # demo = gr.ChatInterface(
47
+ # respond,
48
+ # additional_inputs=[
49
+ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
+ # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
+ # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
+ # gr.Slider(
53
+ # minimum=0.1,
54
+ # maximum=1.0,
55
+ # value=0.95,
56
+ # step=0.05,
57
+ # label="Top-p (nucleus sampling)",
58
+ # ),
59
+ # ],
60
+ # )
61
+
62
+
63
+ # if __name__ == "__main__":
64
+ # demo.launch()
65
+
66
+
67
+ # app.py
68
  import gradio as gr
69
+ from chatbot import generate_response
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70
 
71
+ chat_histories = {}
72
+
73
+ def chat(user_id, user_input):
74
+ if user_id not in chat_histories:
75
+ chat_histories[user_id] = []
76
+
77
+ response, chat_histories[user_id] = generate_response(user_input, chat_histories[user_id])
78
+ return response
79
+
80
+ iface = gr.Interface(
81
+ fn=chat,
82
+ inputs=["text", "text"],
83
+ outputs="text",
84
+ live=True,
85
+ title="BlenderBot Chatbot",
86
+ description="Chat with BlenderBot, a state-of-the-art conversational model.",
87
+ )
88
 
89
  if __name__ == "__main__":
90
+ iface.launch()