File size: 1,476 Bytes
29e3698
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b23f15
29e3698
9b23f15
 
29e3698
 
9b23f15
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
import gradio as gr

input_1 = gr.inputs.Textbox(label = "Input Text")
input_2 = gr.inputs.Image(label = "Input Image")
output_1 = gr.outputs.Textbox(label = "Predicted Housing Prices")
output_2 = gr.outputs.Image(label = "Visualization of the location")
input_longitude = gr.inputs.Slider(-124.35, 114.35, step=1, label = "Longitude")
input_latitude = gr.inputs.Slider(32, 41, step=1, label = "Latitude")
input_housing_median = gr.inputs.Slider(1, 52, step=1, label = "Housing_median")
input_total_rooms = gr.inputs.Slider(1, 39996, step=1, label = "Total_rooms")
input_total_bedrooms = gr.inputs.Slider(1, 6441, step=1, label = "Total_bedrooms")
input_population = gr.inputs.Slider(10, 35678, step=1, label = "Population")
input_households = gr.inputs.Slider(10, 6081, step=1, label = "Households")
input_median_income = gr.inputs.Slider(0, 15, step=0.1, label = "Median_income")

def multi_inputs(input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income):
    import numpy as np
    import pandas as pd

    output1 = "Processing inputs and return outputs" 
    output2 = np.random.rand(6,6) 
    return output1,output2

gr.Interface(fn=multi_inputs, inputs=[input_longitude, input_latitude, input_housing_median, input_total_rooms, input_total_bedrooms, input_population, input_households, input_median_income], 
             outputs=[output_1, output_2]
            ).launch()