Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,203 +1,3 @@
|
|
1 |
-
fashion_mnist = keras.datasets.fashion_mnist
|
2 |
-
(x_train_full, y_train_full), (x_test, y_test) = fashion_mnist.load_data()
|
3 |
-
|
4 |
-
x_valid, x_train = x_train_full[:5000], x_train_full[5000:]
|
5 |
-
y_valid, y_train = y_train_full[:5000], y_train_full[5000:]
|
6 |
-
|
7 |
-
x_train.shape
|
8 |
-
import matplotlib as mpl
|
9 |
-
import matplotlib.pyplot as plt
|
10 |
-
plt.figure(figsize=(14,12))
|
11 |
-
|
12 |
-
plt.subplot(3,3,1)
|
13 |
-
some_image = x_train[0]
|
14 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
15 |
-
|
16 |
-
plt.subplot(3,3,2)
|
17 |
-
some_image = x_train[1]
|
18 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
19 |
-
|
20 |
-
plt.subplot(3,3,3)
|
21 |
-
some_image = x_train[2]
|
22 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
23 |
-
|
24 |
-
plt.subplot(3,3,4)
|
25 |
-
some_image = x_train[3]
|
26 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
27 |
-
|
28 |
-
plt.subplot(3,3,5)
|
29 |
-
some_image = x_train[4]
|
30 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
31 |
-
|
32 |
-
plt.subplot(3,3,6)
|
33 |
-
some_image = x_train[5]
|
34 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
35 |
-
|
36 |
-
plt.subplot(3,3,7)
|
37 |
-
some_image = x_train[6]
|
38 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
39 |
-
|
40 |
-
plt.subplot(3,3,8)
|
41 |
-
some_image = x_train[7]
|
42 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
43 |
-
|
44 |
-
plt.subplot(3,3,9)
|
45 |
-
some_image = x_train[8]
|
46 |
-
plt.imshow(some_image, cmap=mpl.cm.binary)
|
47 |
-
|
48 |
-
plt.show()
|
49 |
-
|
50 |
-
class_names = ["T-shirt/top","Trouser","Pullover", "Dress","Coat","Sandals","Shirt","Sneaker","Bag","Ankle boot"]
|
51 |
-
class_names[y_train[3]]
|
52 |
-
|
53 |
-
pd_y_train = pd.DataFrame(y_train)
|
54 |
-
|
55 |
-
frequency = pd_y_train.value_counts()
|
56 |
-
category = frequency.index.tolist()
|
57 |
-
counts = frequency.values.tolist()
|
58 |
-
# Visualization of train set
|
59 |
-
frequency.plot(kind='bar')
|
60 |
-
plt.title ('Bar plot')
|
61 |
-
plt.xlabel ('Category')
|
62 |
-
plt.ylabel ('Frequency')
|
63 |
-
|
64 |
-
img_shape = x_train.shape
|
65 |
-
n_samples = img_shape[0]
|
66 |
-
width = img_shape[1]
|
67 |
-
height = img_shape[2]
|
68 |
-
|
69 |
-
print("n_samples: ",n_samples)
|
70 |
-
print("width: ",width)
|
71 |
-
print("height: ",height)
|
72 |
-
|
73 |
-
#flatten each 2d mnist image into 1d array and checing dimensions
|
74 |
-
x_train_flatten = x_train.reshape(n_samples, width*height)
|
75 |
-
print("x_train_flatten.shape: ",x_train_flatten.shape)
|
76 |
-
from sklearn.preprocessing import StandardScaler
|
77 |
-
from sklearn.neighbors import KNeighborsClassifier
|
78 |
-
|
79 |
-
# feature scaling
|
80 |
-
standardscaler = StandardScaler()
|
81 |
-
X_train_scale = standardscaler.fit_transform(x_train_flatten)
|
82 |
-
|
83 |
-
# import KNN classifier from sklearn
|
84 |
-
KNN_classifier_scale = KNeighborsClassifier(n_neighbors=5)
|
85 |
-
KNN_classifier_scale. fit(X_train_scale,y_train)
|
86 |
-
|
87 |
-
X_test_stand = standardscaler.transform(x_test_flatten)
|
88 |
-
y_pred = KNN_classifier_scale.predict(X_test_stand)
|
89 |
-
# Cross validation
|
90 |
-
from sklearn.model_selection import cross_val_score
|
91 |
-
from sklearn.neighbors import KNeighborsClassifier
|
92 |
-
|
93 |
-
# define one KNN model
|
94 |
-
KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
|
95 |
-
|
96 |
-
# call cross-val_score
|
97 |
-
CV_scores = cross_val_score(estimator = KNN_classifier, X = x_train_flatten, y = y_train, cv = 3, scoring = 'accuracy')
|
98 |
-
print("CV_scores: ", CV_scores)
|
99 |
-
# Training
|
100 |
-
|
101 |
-
from sklearn.model_selection import cross_val_score
|
102 |
-
from sklearn.neighbors import KNeighborsClassifier
|
103 |
-
|
104 |
-
import time
|
105 |
-
start = time.time()
|
106 |
-
|
107 |
-
KNN_classifier = KNeighborsClassifier(n_neighbors=5, metric = 'euclidean')
|
108 |
-
KNN_classifier.fit(x_train_flatten, y_train)
|
109 |
-
y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
|
110 |
-
|
111 |
-
end = time.time()
|
112 |
-
time_duration = end-start
|
113 |
-
print("Program finishes in {} seconds:".format(time_duration))
|
114 |
-
# Saving the data
|
115 |
-
from joblib import dump, load
|
116 |
-
dump(KNN_classifier, 'KNN_fashionmnist.joblib')
|
117 |
-
# loading the data
|
118 |
-
KNN_classifier = load('KNN_fashionmnist.joblib')
|
119 |
-
|
120 |
-
# organize the predicted classes and actual classes into Pandas dataframe
|
121 |
-
summary = pd.DataFrame({'predection':y_valid_predicted_label,'Original':y_valid})
|
122 |
-
summary
|
123 |
-
|
124 |
-
# Overall accuracy of the validation predictions
|
125 |
-
from sklearn import metrics
|
126 |
-
metrics.accuracy_score(y_valid,y_valid_predicted_label)
|
127 |
-
|
128 |
-
# Calculate the per-class accuracy of the predictions
|
129 |
-
from sklearn.metrics import confusion_matrix
|
130 |
-
matrix = confusion_matrix(y_valid,y_valid_predicted_label)
|
131 |
-
accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
|
132 |
-
|
133 |
-
print('accuracy of t-shirt is',accuracy_score[0])
|
134 |
-
print('accuracy of Trouser is',accuracy_score[1])
|
135 |
-
print('accuracy of pullover is',accuracy_score[2])
|
136 |
-
print('accuracy of Dress is',accuracy_score[3])
|
137 |
-
print('accuracy of coat is',accuracy_score[4])
|
138 |
-
print('accuracy of sandal is',accuracy_score[5])
|
139 |
-
print('accuracy of shirt is',accuracy_score[6])
|
140 |
-
print('accuracy of sneaker is',accuracy_score[7])
|
141 |
-
print('accuracy of bag is',accuracy_score[8])
|
142 |
-
print('accuracy of boot is',accuracy_score[9])
|
143 |
-
|
144 |
-
# visualize the classification confusion matrix to check the details of the validation predictions for each class
|
145 |
-
import matplotlib.pyplot as plt
|
146 |
-
from sklearn.metrics import ConfusionMatrixDisplay
|
147 |
-
ConfusionMatrixDisplay.from_predictions(y_valid, y_valid_predicted_label)
|
148 |
-
plt.title("Classification Confusion matrix")
|
149 |
-
plt.show()
|
150 |
-
|
151 |
-
# Task 4.1.9 Different K values, and select the best model that has highest validation accuracy
|
152 |
-
# visualize the classification confusion matrix on the test set to report the details of predictions over every class
|
153 |
-
from sklearn.neighbors import KNeighborsClassifier
|
154 |
-
KNN_classifier = KNeighborsClassifier(n_neighbors=3, metric = 'euclidean')
|
155 |
-
KNN_classifier.fit(x_train_flatten, y_train)
|
156 |
-
y_valid_predicted_label = KNN_classifier.predict(x_valid_flatten)
|
157 |
-
|
158 |
-
y_valid_predicted_label
|
159 |
-
from sklearn import metrics
|
160 |
-
metrics.accuracy_score(y_valid, y_valid_predicted_label)
|
161 |
-
|
162 |
-
import matplotlib.pyplot as plt
|
163 |
-
from sklearn.metrics import ConfusionMatrixDisplay
|
164 |
-
ConfusionMatrixDisplay.from_predictions(y_test, y_test_pred)
|
165 |
-
plt.title("classifiaction confusion matrix")
|
166 |
-
plt.show()
|
167 |
-
# Task 4.1.10: Calculate the overall accuracy of the predictions over validation set and test set using the best model
|
168 |
-
from sklearn import metrics
|
169 |
-
metrics.accuracy_score(y_test, y_test_pred)
|
170 |
-
# discriminant analysis
|
171 |
-
import numpy as np
|
172 |
-
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
|
173 |
-
clf = LinearDiscriminantAnalysis()
|
174 |
-
clf.fit(x_train_flatten, y_train)
|
175 |
-
|
176 |
-
start = time.time()
|
177 |
-
predicted_labels = clf.predict(x_valid_flatten)
|
178 |
-
end = time.time()
|
179 |
-
time_duration = end-start
|
180 |
-
print("Program finishes in {} seconds:".format(time_duration))
|
181 |
-
|
182 |
-
y_test_pred = clf.predict(x_test_flatten)
|
183 |
-
print("Accuracy of testing Set: ", metrics.accuracy_score(y_test, y_test_pred))
|
184 |
-
y_valid_pred = clf.predict(x_valid_flatten)
|
185 |
-
print("Accuracy of validation Set: ", metrics.accuracy_score(y_valid, y_valid_pred))
|
186 |
-
|
187 |
-
from sklearn.metrics import confusion_matrix
|
188 |
-
matrix = confusion_matrix(y_test,y_test_pred)
|
189 |
-
accuracy_score = matrix.diagonal()/matrix.sum(axis=1)
|
190 |
-
|
191 |
-
print('accuracy of t-shirt is',accuracy_score[0])
|
192 |
-
print('accuracy of Trouser is',accuracy_score[1])
|
193 |
-
print('accuracy of pullover is',accuracy_score[2])
|
194 |
-
print('accuracy of Dress is',accuracy_score[3])
|
195 |
-
print('accuracy of coat is',accuracy_score[4])
|
196 |
-
print('accuracy of sandal is',accuracy_score[5])
|
197 |
-
print('accuracy of shirt is',accuracy_score[6])
|
198 |
-
print('accuracy of sneaker is',accuracy_score[7])
|
199 |
-
print('accuracy of bag is',accuracy_score[8])
|
200 |
-
print('accuracy of boot is',accuracy_score[9])
|
201 |
|
202 |
from gradio.outputs import Label
|
203 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
|
2 |
from gradio.outputs import Label
|
3 |
import gradio as gr
|