mediapipe-face-skin-transform / mediapipe_transform.py
Akjava's picture
fix broken when image is not square
3f3c15f
import cv2
import numpy as np
import mp_triangles
import time
from PIL import Image
from glibvision.cv2_utils import (
blend_rgb_images,
pil_to_bgr_image,
fill_points,
crop,
paste,
)
from mp_utils import (
get_pixel_cordinate_list,
extract_landmark,
get_pixel_cordinate,
get_normalized_landmarks,
sort_triangles_by_depth,
get_landmark_bbox,
)
import numba as nb
@nb.jit(nopython=True, parallel=True)
def blend_rgb_images_numba(image1, image2, mask):
height, width, _ = image1.shape
result = np.empty((height, width, 3), dtype=np.float32)
for i in nb.prange(height):
for j in range(width):
alpha = mask[i, j] / 255.0
for k in range(3):
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
i, j, k
]
return result.astype(np.uint8)
@nb.jit(nopython=True, parallel=True)
def blend_rgba_images_numba(image1, image2, mask):
assert (
image1.shape[2] == image2.shape[2]
), f"Input images must be same image1 = {image1.shape[2]} image2 ={image2.shape[2]}"
channel = image1.shape[2]
height, width, _ = image1.shape
result = np.empty((height, width, channel), dtype=np.float32)
for i in nb.prange(height):
for j in range(width):
alpha = mask[i, j] / 255.0
for k in range(channel):
result[i, j, k] = (1 - alpha) * image1[i, j, k] + alpha * image2[
i, j, k
]
return result.astype(np.uint8)
"""
https://stackoverflow.com/questions/6946653/copying-triangular-image-region-with-pil
This topic give me a idea
"""
"""
bug some hide value make white
"""
debug_affinn = False
min_affin_plus = 0.1
def apply_affine_transformation_to_triangle(src_tri, dst_tri, src_img, dst_img):
src_tri_np = np.float32(src_tri)
dst_tri_np = np.float32(dst_tri)
assert src_tri_np.shape == (3, 2), f"src_tri_np の形状が不正 {src_tri_np.shape}"
assert dst_tri_np.shape == (3, 2), f"dst_tri_np の形状が不正 {dst_tri_np.shape}"
# trying avoid same value,or M will broken
if (src_tri_np[0] == src_tri_np[1]).all():
src_tri_np[0] += min_affin_plus
if (src_tri_np[0] == src_tri_np[2]).all():
src_tri_np[0] += min_affin_plus
if (src_tri_np[1] == src_tri_np[2]).all():
src_tri_np[1] += min_affin_plus
if (src_tri_np[1] == src_tri_np[0]).all():
src_tri_np[1] += min_affin_plus
if (
(src_tri_np[1] == src_tri_np[0]).all()
or (src_tri_np[1] == src_tri_np[2]).all()
or (src_tri_np[2] == src_tri_np[0]).all()
):
print("same will white noise happen")
# 透視変換行列の計算
M = cv2.getAffineTransform(src_tri_np, dst_tri_np)
# 画像のサイズ
h_src, w_src = src_img.shape[:2]
h_dst, w_dst = dst_img.shape[:2]
# 元画像から三角形領域を切り抜くマスク生成
# src_mask = np.zeros((h_src, w_src), dtype=np.uint8)
# cv2.fillPoly(src_mask, [np.int32(src_tri)], 255)
# Not 元画像の三角形領域のみをマスクで抽出
src_triangle = src_img # cv2.bitwise_and(src_img, src_img, mask=src_mask)
# 変換行列を使って元画像の三角形領域を目標画像のサイズへ変換
transformed = cv2.warpAffine(src_triangle, M, (w_dst, h_dst))
if debug_affinn:
cv2.imwrite("affin_src.jpg", src_triangle)
cv2.imwrite("affin_transformed.jpg", transformed)
# print(f"dst_img={dst_img.shape}")
# print(f"transformed={transformed.shape}")
# 変換後のマスクの生成
dst_mask = np.zeros((h_dst, w_dst), dtype=np.uint8)
cv2.fillPoly(dst_mask, [np.int32(dst_tri)], 255)
# 目標画像のマスク領域をクリアするためにデストのインバートマスクを作成
# dst_mask_inv = cv2.bitwise_not(dst_mask)
# 目標画像のマスク部分をクリア
# dst_background = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
# 変換された元画像の三角形部分と目標画像の背景部分を合成
# dst_img = cv2.add(dst_background, transformed)
# s = time.time()
# dst_img = blend_rgb_images(dst_img,transformed,dst_mask)
use_blend_rgb = False
if use_blend_rgb:
if src_img.shape[2] == 3:
dst_img = blend_rgb_images_numba(dst_img, transformed, dst_mask)
else:
dst_img = blend_rgba_images_numba(dst_img, transformed, dst_mask)
else:
dst_mask_inv = cv2.bitwise_not(dst_mask)
transformed = cv2.bitwise_and(transformed, transformed, mask=dst_mask)
dst_img = cv2.bitwise_and(dst_img, dst_img, mask=dst_mask_inv)
dst_img = cv2.add(dst_img, transformed)
# TODO add rgb mode
# print(f"blend {time.time() -s}")
if debug_affinn:
cv2.imwrite("affin_transformed_masked.jpg", transformed)
cv2.imwrite("affin_dst_mask.jpg", dst_mask)
return dst_img
from skimage.exposure import match_histograms
def color_match(base_image, cropped_image, color_match_format="RGB"):
reference = np.array(base_image.convert(color_match_format))
target = np.array(cropped_image.convert(color_match_format))
matched = match_histograms(target, reference, channel_axis=-1)
return Image.fromarray(matched, mode=color_match_format)
def process_landmark_transform(
image,
transform_target_image,
innner_mouth,
innner_eyes,
color_matching=False,
transparent_background=False,
add_align_mouth=False,
add_align_eyes=False,
blur_size=0,
):
image_h, image_w = image.shape[:2]
align_h, align_w = transform_target_image.shape[:2]
mp_image, image_face_landmarker_result = extract_landmark(image)
image_larndmarks = image_face_landmarker_result.face_landmarks
image_bbox = get_landmark_bbox(image_larndmarks, image_w, image_h, 16, 16)
mp_image, align_face_landmarker_result = extract_landmark(transform_target_image)
align_larndmarks = align_face_landmarker_result.face_landmarks
align_bbox = get_landmark_bbox(align_larndmarks, align_w, align_h, 16, 16)
if color_matching:
image_cropped = crop(image, image_bbox)
target_cropped = crop(transform_target_image, align_bbox)
matched = match_histograms(image_cropped, target_cropped, channel_axis=-1)
paste(image, matched, image_bbox[0], image_bbox[1])
landmark_points = get_normalized_landmarks(align_larndmarks)
mesh_triangle_indices = (
mp_triangles.mesh_triangle_indices.copy()
) # using directly sometime share
# always mix for blur
mesh_triangle_indices += mp_triangles.INNER_MOUTH
mesh_triangle_indices += (
mp_triangles.INNER_LEFT_EYES + mp_triangles.INNER_RIGHT_EYES
)
# print(mesh_triangle_indices)
sort_triangles_by_depth(landmark_points, mesh_triangle_indices)
# mesh_triangle_indices = mp_triangles.contour_to_triangles(True,draw_updown_contour) + mp_triangles.contour_to_triangles(False,draw_updown_contour)+ mp_triangles.mesh_triangle_indices
triangle_size = len(mesh_triangle_indices)
# print(f"triangle_size = {triangle_size},time ={0.1*triangle_size}")
s = time.time()
need_transparent_way = transparent_background == True or blur_size > 0
if need_transparent_way: # convert Alpha
transparent_image = np.zeros_like(
cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA)
)
h, w = transparent_image.shape[:2]
cv2.rectangle(transparent_image, (0, 0), (w, h), (0, 0, 0, 0), -1)
applied_image = transparent_image
image = cv2.cvtColor(image, cv2.COLOR_BGR2BGRA)
else:
applied_image = transform_target_image
for i in range(0, triangle_size): #
triangle_indices = mesh_triangle_indices[i]
image_points = get_pixel_cordinate_list(
image_larndmarks, triangle_indices, image_w, image_h
)
align_points = get_pixel_cordinate_list(
align_larndmarks, triangle_indices, align_w, align_h
)
# print(image_points)
# print(align_points)
# fill_points(image,image_points,thickness=3,fill_color=(0,0,0,0))
# s = time.time()
# print(f"applied_image={applied_image.shape}")
applied_image = apply_affine_transformation_to_triangle(
image_points, align_points, image, applied_image
)
# print(f"take time {time.time()-s}")
if need_transparent_way:
blur_radius = blur_size
if blur_radius != 0 and blur_radius % 2 == 0:
blur_radius += 1
b, g, r, a = cv2.split(applied_image)
applied_image = cv2.merge([b, g, r])
mask = a.copy()
dilate = blur_radius
kernel = np.ones((dilate, dilate), np.uint8)
mask = cv2.erode(mask, kernel, iterations=1)
if blur_radius > 0:
blurred_image = cv2.GaussianBlur(
mask, (blur_radius, blur_radius), 0
) # should be odd
else:
blurred_image = mask
if transparent_background:
# transform_target_image = np.zeros_like(cv2.cvtColor(transform_target_image, cv2.COLOR_BGR2BGRA))
transform_target_image = cv2.cvtColor(
transform_target_image, cv2.COLOR_BGR2BGRA
)
applied_image = cv2.merge([b, g, r, blurred_image])
else:
applied_image = blend_rgb_images(
transform_target_image, applied_image, blurred_image
)
# after mix
if (
not innner_mouth
or not innner_eyes
or (transparent_background and (add_align_mouth or add_align_eyes))
):
import mp_constants
dst_mask = np.zeros((align_h, align_w), dtype=np.uint8)
if not innner_mouth or (transparent_background and add_align_mouth):
mouth_cordinates = get_pixel_cordinate_list(
align_larndmarks, mp_constants.LINE_INNER_MOUTH, align_w, align_h
)
cv2.fillPoly(dst_mask, [np.int32(mouth_cordinates)], 255)
if transparent_background and not add_align_mouth:
cv2.fillPoly(
transform_target_image, [np.int32(mouth_cordinates)], [0, 0, 0, 0]
)
if not innner_eyes or (transparent_background and add_align_eyes):
left_eyes_cordinates = get_pixel_cordinate_list(
align_larndmarks, mp_constants.LINE_LEFT_INNER_EYES, align_w, align_h
)
cv2.fillPoly(dst_mask, [np.int32(left_eyes_cordinates)], 255)
right_eyes_cordinates = get_pixel_cordinate_list(
align_larndmarks, mp_constants.LINE_RIGHT_INNER_EYES, align_w, align_h
)
cv2.fillPoly(dst_mask, [np.int32(right_eyes_cordinates)], 255)
if transparent_background and not add_align_eyes:
cv2.fillPoly(
transform_target_image,
[np.int32(left_eyes_cordinates)],
[0, 0, 0, 0],
)
cv2.fillPoly(
transform_target_image,
[np.int32(right_eyes_cordinates)],
[0, 0, 0, 0],
)
# cv2.imwrite("deb_transform_target_image.jpg",transform_target_image)
# cv2.imwrite("deb_dst_mask.jpg",dst_mask)
# cv2.imwrite("deb_applied_image.jpg",applied_image)
applied_image = blend_rgba_images_numba(
applied_image, transform_target_image, dst_mask
)
cv2.imwrite("deb_final_transform_target_image.jpg", transform_target_image)
return applied_image
def process_landmark_transform_pil(
pil_image,
pil_align_target_image,
innner_mouth,
innner_eyes,
color_matching=False,
transparent_background=False,
add_align_mouth=False,
add_align_eyes=False,
blur_size=0,
):
image = pil_to_bgr_image(pil_image)
align_target_image = pil_to_bgr_image(pil_align_target_image)
cv_result = process_landmark_transform(
image,
align_target_image,
innner_mouth,
innner_eyes,
color_matching,
transparent_background,
add_align_mouth,
add_align_eyes,
blur_size,
)
if transparent_background:
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGRA2RGBA))
else:
return Image.fromarray(cv2.cvtColor(cv_result, cv2.COLOR_BGR2RGB))
if __name__ == "__main__":
# image = Image.open('examples/00002062.jpg')
# align_target = Image.open('examples/02316230.jpg')
image = cv2.imread("examples/02316230.jpg") # 元画像
align_target = cv2.imread("examples/00003245_00.jpg") # 目標画像
result_img = process_landmark_transform(image, align_target)
cv2.imshow("Transformed Image", result_img)
cv2.waitKey(0)
cv2.destroyAllWindows()
cv2.imwrite("align.png", result_img)