File size: 10,448 Bytes
cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 cd4ddd3 187a6d3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import gradio as gr
import torch
import os
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import yfinance as yf
from datetime import datetime
from huggingface_hub import login
# Get Hugging Face token from environment variables
hf_token = os.environ.get("HF_TOKEN")
if hf_token:
# Login to Hugging Face
login(token=hf_token)
print("Successfully logged in to Hugging Face")
else:
print("WARNING: HF_TOKEN not found in environment variables. You may face access issues for gated models.")
# Load the Chatbot Model and Tokenizer
model_name = "Akshit-77/llama-3.2-3b-chatbot"
# Try to use local cache if already downloaded, otherwise load with auth token
try:
tokenizer = AutoTokenizer.from_pretrained(model_name, token=hf_token)
except Exception as e:
print(f"Error loading tokenizer: {e}")
raise
# Configure quantization for memory efficiency
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="fp4",
bnb_4bit_compute_dtype="float16"
)
# Load model with quantization and auth token
try:
model = AutoModelForCausalLM.from_pretrained(
model_name,
quantization_config=bnb_config,
device_map="auto",
token=hf_token
)
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise
# CSS for Chatbot UI
css = """
#chatbot {
font-family: Arial, sans-serif;
background-color: #e5ddd5;
}
.message {
padding: 10px 15px;
border-radius: 7.5px;
margin: 5px 0;
max-width: 75%;
position: relative;
}
.user-message {
background: #dcf8c6;
margin-left: auto;
margin-right: 10px;
}
.bot-message {
background: white;
margin-left: 10px;
}
.timestamp {
font-size: 0.7em;
color: #667781;
float: right;
margin-left: 10px;
margin-top: 3px;
}
"""
class StockDataRetriever:
def __init__(self):
self.stock_mapping = {
# Existing mappings
'RELIANCE': 'RELIANCE.NS',
'TCS': 'TCS.NS',
'HDFCBANK': 'HDFCBANK.NS',
'INFY': 'INFY.NS',
'ICICIBANK': 'ICICIBANK.NS',
# Expanded Mappings
'RELIANCE-INDUSTRIES': 'RELIANCE.NS',
'HDFC': 'HDFC.NS',
'ONGC': 'ONGC.NS',
'INDIAN-OIL-CORPORATION': 'IOC.NS',
'ADANI-GROUP': 'ADANIENT.NS', # Using Adani Enterprises as a representative
'HERO-MOTOCORP': 'HEROMOTOCO.NS',
'ASIAN-PAINTS': 'ASIANPAINT.NS',
'EICHER-MOTORS': 'EICHERMOT.NS',
'ITC': 'ITC.NS',
'TATA-STEEL': 'TATASTEEL.NS',
'SHRIRAM-TRANSPORT-FINANCE': 'SHRIRAMFIN.NS',
'DR-REDDYS-LABORATORIES': 'DRREDDY.NS',
'INFOSYS': 'INFY.NS',
'SUN-PHARMA': 'SUNPHARMA.NS',
'TATA-CONSULTANCY-SERVICES': 'TCS.NS',
'MARUTI-SUZUKI': 'MARUTI.NS',
'HCL-TECHNOLOGIES': 'HCLTECH.NS',
'COAL-INDIA': 'COALINDIA.NS',
'LTI-MINDTREE': 'MINDTREE.NS',
'HDFC-LIFE': 'HDFCLIFE.NS',
'BAJAJ-AUTO': 'BAJAJ-AUTO.NS',
'BRITANNIA-INDUSTRIES': 'BRITANNIA.NS',
'HINDALCO-INDUSTRIES': 'HINDALCO.NS',
'LARSEN-AND-TOUBRO': 'LT.NS',
'TATA-CONSUMER-PRODUCTS': 'TATACONSUM.NS',
'WIPRO': 'WIPRO.NS',
'TITAN': 'TITAN.NS',
'BAJAJ-FINANCE': 'BAJFINANCE.NS',
'JSW-STEEL': 'JSWSTEEL.NS',
'ICICI-BANK': 'ICICIBANK.NS',
'INDUSIND-BANK': 'INDUSINDBK.NS',
'BHARTI-AIRTEL': 'BHARTIARTL.NS',
'DIVIS-LABORATORIES': 'DIVISLAB.NS',
'SBI-LIFE-INSURANCE': 'SBILIFE.NS',
'BAJAJ-FINSERV': 'BAJAJFINSV.NS',
'CIPLA': 'CIPLA.NS',
'GRASIM-INDUSTRIES': 'GRASIM.NS',
'HINDUSTAN-UNILEVER': 'HINDUNILVR.NS',
'MAHINDRA-AND-MAHINDRA': 'M&M.NS',
'TATA-MOTORS': 'TATAMOTORS.NS',
'APOLLO-HOSPITALS-ENTERPRISES': 'APOLLOHOSP.NS',
'SBI': 'SBIN.NS',
'KOTAK-MAHINDRA-BANK': 'KOTAKBANK.NS',
'POWER-GRID-CORPORATION-OF-INDIA': 'POWERGRID.NS',
'AXIS-BANK': 'AXISBANK.NS',
'NTPC': 'NTPC.NS',
'TECH-MAHINDRA': 'TECHM.NS',
'ADANI-PORTS': 'ADANIPORTS.NS',
'ULTRATECH-CEMENT': 'ULTRACEMCO.NS',
'NESTLE': 'NESTLE.NS',
'BHARAT-PETROLEUM': 'BPCL.NS'
}
def get_stock_data(self, symbol: str):
"""Fetch stock data from Yahoo Finance"""
try:
# Convert symbol to Yahoo Finance format
yf_symbol = self.stock_mapping.get(symbol.upper(), f"{symbol.upper()}.NS")
stock = yf.Ticker(yf_symbol)
info = stock.info
# Check if the response is valid
if not info or 'currentPrice' not in info:
return {"error": f"Stock symbol '{symbol}' not found or invalid. Please verify the symbol."}
return {
"current_price": info.get("currentPrice", "N/A"),
"previous_close": info.get("previousClose", "N/A"),
"day_high": info.get("dayHigh", "N/A"),
"day_low": info.get("dayLow", "N/A"),
"last_updated": datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
}
except Exception as e:
return {"error": f"Could not fetch stock data: {str(e)}"}
class RAGPipeline:
def __init__(self, model_path):
self.tokenizer = tokenizer # Use already loaded tokenizer
self.model = model # Use already loaded model
self.stock_retriever = StockDataRetriever()
self.encoder = SentenceTransformer('all-MiniLM-L6-v2')
# Expanded and more flexible knowledge base
self.knowledge_base = [
"stock price of",
"current price",
"stock performance",
"today's stock price",
"stock data for",
"price of stock"
]
self.knowledge_embeddings = self.encoder.encode(self.knowledge_base)
# Predefined stock symbols for easier matching
self.stock_symbols = list(self.stock_retriever.stock_mapping.keys())
def _extract_stock_symbol(self, query):
# Try to find a stock symbol in the query
query_upper = query.upper()
for symbol in self.stock_symbols:
if symbol in query_upper:
return symbol
# Fallback: try to extract the last word if it looks like a symbol
words = query.split()
if words and len(words[-1]) > 1:
return words[-1].upper()
return None
def _is_price_query(self, query):
query_embedding = self.encoder.encode([query.lower()])
similarities = cosine_similarity(query_embedding, self.knowledge_embeddings)[0]
# Lower the threshold and check if any similarity is significant
return max(similarities) > 0.5
def _format_stock_data(self, stock_data):
"""Format stock data into a readable string"""
if 'error' in stock_data:
return stock_data['error']
return (
f"Stock Data:\n"
f"Current Price: ₹{stock_data['current_price']}\n"
f"Previous Close: ₹{stock_data['previous_close']}\n"
f"Day's High: ₹{stock_data['day_high']}\n"
f"Day's Low: ₹{stock_data['day_low']}\n"
f"Last Updated: {stock_data['last_updated']}"
)
def generate_response(self, query):
# Check if the query is related to stock prices
stock_context = ""
if self._is_price_query(query):
# Extract stock symbol
symbol = self._extract_stock_symbol(query)
if symbol:
# Retrieve stock data
stock_data = self.stock_retriever.get_stock_data(symbol)
stock_context = self._format_stock_data(stock_data)
else:
stock_context = "No specific stock symbol could be identified."
# Prepare input for the model with stock context
full_prompt = (
f"Context: {stock_context}\n\n"
f"Question: {query}\n"
"Answer:"
)
# Generate response using the fine-tuned model
inputs = self.tokenizer(full_prompt, return_tensors="pt").to(self.model.device)
with torch.no_grad():
outputs = self.model.generate(inputs["input_ids"], max_length=500)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# Initialize the pipeline once
try:
pipeline = RAGPipeline(model_name)
print("RAG Pipeline initialized successfully")
except Exception as e:
print(f"Error initializing RAG Pipeline: {e}")
raise
# Chatbot Interface function
def chat(message, history):
history = history or []
try:
response = pipeline.generate_response(message)
history.append((message, response))
except Exception as e:
history.append((message, f"Error generating response: {str(e)}"))
return history, ""
# Define the Gradio interface
def create_interface():
with gr.Blocks(css=css) as iface:
gr.HTML("<h1>Indian Stock Market Assistant</h1>")
gr.HTML("<p>Ask me about Indian stock prices or any general questions.</p>")
chatbot = gr.Chatbot(height=600, elem_id="chatbot")
txt = gr.Textbox(
placeholder="Type your question here (e.g., 'What is the current price of RELIANCE?')",
show_label=False
)
txt.submit(chat, [txt, chatbot], [chatbot, txt])
gr.HTML("""
<div style="text-align: center; margin-top: 20px; padding: 10px; background-color: #f0f0f0; border-radius: 5px;">
<p>This chatbot provides real-time Indian stock market data and can answer general questions.</p>
<p>Examples: "What's the current price of TCS?", "How is HDFC performing today?", "Tell me about RELIANCE stock"</p>
</div>
""")
return iface
# Create and launch the interface
try:
iface = create_interface()
print("Interface created successfully")
except Exception as e:
print(f"Error creating interface: {e}")
raise
# For Hugging Face Spaces deployment
if __name__ == "__main__":
iface.launch() |