Spaces:
Sleeping
Sleeping
File size: 10,304 Bytes
c82482f 9b5b26a c82482f 8fe992b 9b5b26a c82482f 9b5b26a c82482f 9b5b26a c82482f 9b5b26a c82482f 9b5b26a c82482f 9b5b26a c82482f 9b5b26a c82482f 8c01ffb c82482f ae7a494 c82482f 8c01ffb c82482f 8c01ffb c82482f 9b5b26a c82482f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
from smolagents import tool
import requests
import json
import datetime
import os
import base64
from typing import List, Optional, Dict, Any
import pandas as pd
import matplotlib.pyplot as plt
import io
@tool
def web_scrape(url: str) -> str:
"""Scrapes the content from a specified URL.
Args:
url: The URL to scrape content from.
"""
try:
response = requests.get(url, headers={
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'
})
response.raise_for_status()
return response.text
except Exception as e:
return f"Error scraping {url}: {str(e)}"
@tool
def extract_structured_data(text: str, schema: str) -> str:
"""Extracts structured data from text based on a provided schema.
Args:
text: The text to extract data from.
schema: JSON schema describing the data structure to extract.
"""
try:
# In a real implementation, you might use regex, NLP, or ML models
# This is a placeholder for demonstrating the concept
return f"Extracted structured data according to schema: {schema}"
except Exception as e:
return f"Error extracting structured data: {str(e)}"
@tool
def data_visualization(data: str, chart_type: str, title: str = "Data Visualization") -> str:
"""Creates a data visualization from structured data.
Args:
data: JSON string or CSV text with the data to visualize.
chart_type: Type of chart to create (bar, line, scatter, pie).
title: Title for the visualization.
"""
try:
# Parse the input data
try:
# Try parsing as JSON first
data_parsed = json.loads(data)
df = pd.DataFrame(data_parsed)
except:
# If not JSON, try as CSV
csv_data = io.StringIO(data)
df = pd.DataFrame.from_records(pd.read_csv(csv_data))
# Create appropriate visualization
plt.figure(figsize=(10, 6))
if chart_type.lower() == 'bar':
df.plot(kind='bar')
elif chart_type.lower() == 'line':
df.plot(kind='line')
elif chart_type.lower() == 'scatter':
# Assuming first two columns are x and y
columns = df.columns
if len(columns) >= 2:
plt.scatter(df[columns[0]], df[columns[1]])
else:
return "Need at least two columns for scatter plot"
elif chart_type.lower() == 'pie':
# Assuming first column is labels, second is values
columns = df.columns
if len(columns) >= 2:
plt.pie(df[columns[1]], labels=df[columns[0]], autopct='%1.1f%%')
else:
return "Need at least two columns for pie chart"
else:
return f"Unsupported chart type: {chart_type}"
plt.title(title)
# Save to bytes buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
# Convert to base64 for embedding in HTML or returning
img_str = base64.b64encode(buf.read()).decode('utf-8')
# Return a reference or small thumbnail
return f"Visualization created successfully. Image data (base64): {img_str[:30]}..."
except Exception as e:
return f"Error creating visualization: {str(e)}"
@tool
def code_refactor(code: str, language: str, optimization: str) -> str:
"""Refactors code based on specified optimization criteria.
Args:
code: The source code to refactor.
language: Programming language of the code.
optimization: Type of optimization to perform (performance, readability, security).
"""
try:
# In a real implementation, you'd use language-specific tools or ML models
# This is a placeholder for demonstrating the concept
if optimization.lower() == 'performance':
return f"Code refactored for performance: \n```{language}\n# Performance optimized\n{code}\n```"
elif optimization.lower() == 'readability':
return f"Code refactored for readability: \n```{language}\n# Readability optimized\n{code}\n```"
elif optimization.lower() == 'security':
return f"Code refactored for security: \n```{language}\n# Security optimized\n{code}\n```"
else:
return f"Unsupported optimization type: {optimization}"
except Exception as e:
return f"Error refactoring code: {str(e)}"
@tool
def api_interaction(endpoint: str, method: str = "GET", params: Optional[str] = None, headers: Optional[str] = None) -> str:
"""Interacts with an API endpoint.
Args:
endpoint: The API endpoint URL.
method: HTTP method (GET, POST, PUT, DELETE).
params: JSON string of parameters or data to send.
headers: JSON string of headers to include.
"""
try:
# Parse headers and params if provided
headers_dict = json.loads(headers) if headers else {}
if method.upper() == "GET":
params_dict = json.loads(params) if params else {}
response = requests.get(endpoint, params=params_dict, headers=headers_dict)
elif method.upper() == "POST":
data_dict = json.loads(params) if params else {}
response = requests.post(endpoint, json=data_dict, headers=headers_dict)
elif method.upper() == "PUT":
data_dict = json.loads(params) if params else {}
response = requests.put(endpoint, json=data_dict, headers=headers_dict)
elif method.upper() == "DELETE":
response = requests.delete(endpoint, headers=headers_dict)
else:
return f"Unsupported HTTP method: {method}"
response.raise_for_status()
# Try to return JSON if possible, otherwise return text
try:
return json.dumps(response.json(), indent=2)
except:
return response.text
except Exception as e:
return f"Error interacting with API {endpoint}: {str(e)}"
@tool
def natural_language_query(database_description: str, query: str) -> str:
"""Translates a natural language query to structured data operations.
Args:
database_description: Description of the database schema.
query: Natural language query about the data.
"""
try:
# In a real implementation, you'd use NLP to SQL or similar technology
# This is a placeholder for demonstrating the concept
return f"Query translated and executed. Results for: {query}"
except Exception as e:
return f"Error processing natural language query: {str(e)}"
@tool
def file_operations(operation: str, file_path: str, content: Optional[str] = None) -> str:
"""Performs operations on files.
Args:
operation: The operation to perform (read, write, append, list).
file_path: Path to the file or directory.
content: Content to write or append (only for write/append operations).
"""
try:
if operation.lower() == 'read':
with open(file_path, 'r') as file:
return file.read()
elif operation.lower() == 'write':
if content is None:
return "Content must be provided for write operation"
with open(file_path, 'w') as file:
file.write(content)
return f"Content written to {file_path}"
elif operation.lower() == 'append':
if content is None:
return "Content must be provided for append operation"
with open(file_path, 'a') as file:
file.write(content)
return f"Content appended to {file_path}"
elif operation.lower() == 'list':
if os.path.isdir(file_path):
return str(os.listdir(file_path))
else:
return f"{file_path} is not a directory"
else:
return f"Unsupported file operation: {operation}"
except Exception as e:
return f"Error performing file operation: {str(e)}"
@tool
def semantic_search(corpus: str, query: str, top_k: int = 3) -> str:
"""Performs semantic search on a corpus of text.
Args:
corpus: The text corpus to search within (could be a large text or list of documents).
query: The search query.
top_k: Number of top results to return.
"""
try:
# In a real implementation, you'd use embedding models and vector similarity
# This is a placeholder for demonstrating the concept
results = [
{"text": f"Result {i} for query: {query}", "score": (top_k - i) / top_k}
for i in range(1, top_k + 1)
]
return json.dumps(results, indent=2)
except Exception as e:
return f"Error performing semantic search: {str(e)}"
@tool
def weather_forecast(location: str) -> str:
"""Fetches weather forecast for a specified location.
Args:
location: The location to get weather forecast for (city name or coordinates).
"""
try:
# In a real implementation, you'd connect to a weather API
# This is a placeholder for demonstrating the concept
return f"Weather forecast for {location}: Sunny with a chance of AI"
except Exception as e:
return f"Error fetching weather forecast: {str(e)}"
@tool
def task_scheduler(task: str, schedule_time: str, priority: int = 1) -> str:
"""Schedules a task to be performed at a specified time.
Args:
task: Description of the task to be scheduled.
schedule_time: Time to schedule the task (ISO format).
priority: Priority level of the task (1-5, where 1 is highest).
"""
try:
# Parse the schedule time
schedule_datetime = datetime.datetime.fromisoformat(schedule_time)
# In a real implementation, you'd connect to a scheduling system
# This is a placeholder for demonstrating the concept
return f"Task '{task}' scheduled for {schedule_datetime} with priority {priority}"
except Exception as e:
return f"Error scheduling task: {str(e)}" |