File size: 10,761 Bytes
650b9e8
 
 
 
 
c115c70
650b9e8
4d6e8c2
3b09640
 
 
998e8ac
3b09640
 
 
4d6e8c2
3b09640
 
 
 
4d6e8c2
 
 
8d9bc84
1c33274
70f5f26
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c33274
70f5f26
4d6e8c2
 
3b09640
70f5f26
 
3b09640
70f5f26
3b09640
 
 
 
4d6e8c2
3b09640
4d6e8c2
3b09640
 
 
 
 
1431ab9
0ae53cb
3b09640
 
 
 
 
 
 
 
 
 
650b9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3b09640
 
 
 
 
650b9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c115c70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
650b9e8
 
 
 
 
 
 
 
 
 
 
 
 
 
3b09640
 
 
 
 
650b9e8
3b09640
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
998e8ac
3b09640
998e8ac
 
3b09640
 
 
 
 
 
 
 
 
 
 
 
4d6e8c2
 
3b09640
70f5f26
3b09640
998e8ac
 
3b09640
 
 
 
 
 
4d6e8c2
 
70f5f26
4d6e8c2
3b09640
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
from torch.utils.data import DataLoader, Dataset
from huggingface_hub import hf_hub_download

from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
import numpy as np
from sklearn.metrics import accuracy_score, precision_score, recall_score
import random
import os

from .utils.evaluation import ImageEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info

from dotenv import load_dotenv
load_dotenv()

router = APIRouter()

DESCRIPTION = "Convolutionnal Neural Network"
ROUTE = "/image"

def parse_boxes(annotation_string):
    """Parse multiple boxes from a single annotation string.
    Each box has 5 values: class_id, x_center, y_center, width, height"""
    values = [float(x) for x in annotation_string.strip().split()]
    boxes = []
    # Each box has 5 values
    for i in range(0, len(values), 5):
        if i + 5 <= len(values):
            # Skip class_id (first value) and take the next 4 values
            box = values[i+1:i+5]
            boxes.append(box)
    return boxes

def compute_iou(box1, box2):
    """Compute Intersection over Union (IoU) between two YOLO format boxes."""
    # Convert YOLO format (x_center, y_center, width, height) to corners
    def yolo_to_corners(box):
        x_center, y_center, width, height = box
        x1 = x_center - width/2
        y1 = y_center - height/2
        x2 = x_center + width/2
        y2 = y_center + height/2
        return np.array([x1, y1, x2, y2])
    
    box1_corners = yolo_to_corners(box1)
    box2_corners = yolo_to_corners(box2)
    
    # Calculate intersection
    x1 = max(box1_corners[0], box2_corners[0])
    y1 = max(box1_corners[1], box2_corners[1])
    x2 = min(box1_corners[2], box2_corners[2])
    y2 = min(box1_corners[3], box2_corners[3])
    
    intersection = max(0, x2 - x1) * max(0, y2 - y1)
    
    # Calculate union
    box1_area = (box1_corners[2] - box1_corners[0]) * (box1_corners[3] - box1_corners[1])
    box2_area = (box2_corners[2] - box2_corners[0]) * (box2_corners[3] - box2_corners[1])
    union = box1_area + box2_area - intersection
    
    return intersection / (union + 1e-6)

def compute_max_iou(true_boxes, pred_box):
    """Compute maximum IoU between a predicted box and all true boxes"""
    max_iou = 0
    for true_box in true_boxes:
        iou = compute_iou(true_box, pred_box)
        max_iou = max(max_iou, iou)
    return max_iou

@router.post(ROUTE, tags=["Image Task"],
             description=DESCRIPTION)
async def evaluate_image(request: ImageEvaluationRequest):
    """
    Evaluate image classification and object detection for forest fire smoke.
    
    Current Model: Random Baseline
    - Makes random predictions for both classification and bounding boxes
    - Used as a baseline for comparison
    
    Metrics:
    - Classification accuracy: Whether an image contains smoke or not
    - Object Detection accuracy: IoU (Intersection over Union) for smoke bounding boxes
    """
    # Get space info
    username, space_url = get_space_info()
    
    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name, token=os.getenv("HF_TOKEN"))
    
    # Split dataset
    train_test = dataset["train"]
    test_dataset = dataset["val"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE CODE HERE
    # Update the code below to replace the random baseline with your model inference
    #--------------------------------------------------------------------------------------------   
    
    class ImageClassifier(nn.Module):
        def __init__(self):
            super(ImageClassifier, self).__init__()
            self.conv1 = nn.Conv2d(3, 32, kernel_size=3, padding=1)
            self.relu1 = nn.ReLU()
            self.pool1 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.conv2 = nn.Conv2d(32, 64, kernel_size=3, padding=1)
            self.relu2 = nn.ReLU()
            self.pool2 = nn.MaxPool2d(kernel_size=2, stride=2)
            self.fc1 = nn.Linear(64 * 16 * 16, 128) 
            self.relu3 = nn.ReLU()
            self.fc2 = nn.Linear(128, 2)  # Output layer with 2 classes (0, 1)

        def forward(self, x):
            x = self.pool1(self.relu1(self.conv1(x)))
            x = self.pool2(self.relu2(self.conv2(x)))
            x = x.view(x.size(0), -1) 
            x = self.relu3(self.fc1(x))
            x = self.fc2(x)
            return x

    class CustomDataset(Dataset, labels):
        def __init__(self, dataset, transform=None):
            self.dataset = dataset
            self.transform = transform
            self.labels = labels

        def __len__(self):
            return len(self.dataset)

        def __getitem__(self, idx):
            image = self.dataset[idx]['image']
            label = self.labels[idx] 

            if self.transform:
                image = self.transform(image)

            return image, label

    # Create an instance of the model
    model = ImageClassifier()

    # Define loss function and optimizer
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(model.parameters(), lr=0.1)

    predictions = []
    true_labels = []
    pred_boxes = []
    true_boxes_list = []  # List of lists, each inner list contains boxes for one image
    
    # Data Augmentation:
    torch.manual_seed(0)

    transform = transforms.Compose([
        transforms.RandomCrop(size=(512, 512)),  # Crop an image to reduce informations
        transforms.Resize(size=(64, 64)),  # Resize to a standard size, experiment with different sizes
        transforms.RandomHorizontalFlip(),
        transforms.RandomVerticalFlip(),
        transforms.RandomRotation(30),  # Add random rotations
        transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2), # Color variations
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # Normalize for ImageNet
    ])

    # Dataset Loader for CNN computation
    train_loader = DataLoader(train_test, batch_size=64, shuffle=False)
    test_loader = DataLoader(test_dataset, batch_size=64, shuffle=True)

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)


    # Training loop 
    # num_epochs = 10 
    # for epoch in range(num_epochs):
    #     for images, labels in train_loader :
    #         images, labels = images.to(device), labels.to(device)
    #         # Zero the parameter gradients
    #         optimizer.zero_grad()

    #         # Forward + backward + optimize
    #         outputs = model(images)
    #         loss = criterion(outputs, labels)
    #         loss.backward()
    #         optimizer.step()
    #     print(f'Epoch [{epoch + 1}/10], Loss: {loss.item():.4f}')

    # Charging pre-trained model
    repo_id = "AlexandreL2024/CNN-Image-Classification"
    filename = "model_CNN_2Layers.pth"
    
    # Upload file .pth from Hugging Face
    model_path = hf_hub_download(repo_id=repo_id, filename=filename)
    
    # Charger le modèle avec torch.load()
    model = ImageClassifier()
    model = model.load_state_dict(torch.load(model_path))

    # Evaluation loop
    model.eval()  # Set the model to evaluation mode

    with torch.no_grad():
        for images, labels in test_loader:
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            # Apply sigmoid to get probabilities
            probabilities = torch.sigmoid(outputs)
            #Get the predicted class with maximum probability
            _, prediction = torch.max(probabilities, 1)
            predictions.extend(prediction.cpu().numpy())

    for example in test_dataset:
        # Parse true annotation (YOLO format: class_id x_center y_center width height)
        annotation = example.get("annotations", "").strip()
        has_smoke = len(annotation) > 0
        true_labels.append(int(has_smoke))
              
        # If there's a true box, parse it and make random box prediction
        if has_smoke:
            # Parse all true boxes from the annotation
            image_true_boxes = parse_boxes(annotation)
            true_boxes_list.append(image_true_boxes)
            
            # For baseline, make one random box prediction per image
            # In a real model, you might want to predict multiple boxes
            random_box = [
                random.random(),  # x_center
                random.random(),  # y_center
                random.random() * 0.5,  # width (max 0.5)
                random.random() * 0.5   # height (max 0.5)
            ]
            pred_boxes.append(random_box)
    
    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   
    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate classification metrics
    classification_accuracy = accuracy_score(true_labels, predictions)
    classification_precision = precision_score(true_labels, predictions)
    classification_recall = recall_score(true_labels, predictions)
    
    # Calculate mean IoU for object detection (only for images with smoke)
    # For each image, we compute the max IoU between the predicted box and all true boxes
    ious = []
    for true_boxes, pred_box in zip(true_boxes_list, pred_boxes):
        max_iou = compute_max_iou(true_boxes, pred_box)
        ious.append(max_iou)
    
    mean_iou = float(np.mean(ious)) if ious else 0.0
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "classification_accuracy": float(classification_accuracy),
        "classification_precision": float(classification_precision),
        "classification_recall": float(classification_recall),
        "mean_iou": mean_iou,
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results