Ubai's picture
Update app.py
d4b9831 verified
raw
history blame
5.99 kB
import gradio as gr
import os
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.llms import HuggingFaceHub
from pathlib import Path
import chromadb
# List of available LLM models
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1",
"google/gemma-7b-it", "google/gemma-2b-it",
"HuggingFaceH4/zephyr-7b-beta", "meta-llama/Llama-2-7b-chat-hf", "microsoft/phi-2",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0", "mosaicml/mpt-7b-instruct", "tiiuae/falcon-7b-instruct",
"google/flan-t5-xxl"
]
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
# Load PDF document and create doc splits
def load_doc(list_file_path, chunk_size, chunk_overlap):
loaders = [PyPDFLoader(x) for x in list_file_path]
pages = []
for loader in loaders:
pages.extend(loader.load())
text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
doc_splits = text_splitter.split_documents(pages)
return doc_splits
# Create vector database
def create_db(splits, collection_name):
embedding = HuggingFaceEmbeddings()
new_client = chromadb.EphemeralClient()
vectordb = Chroma.from_documents(
documents=splits,
embedding=embedding,
client=new_client,
collection_name=collection_name
)
return vectordb
# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "load_in_8bit": True}
elif llm_model == "microsoft/phi-2":
raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
model_kwargs = {"temperature": temperature, "max_new_tokens": 250, "top_k": top_k}
else:
model_kwargs = {"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k}
llm = HuggingFaceHub(
repo_id=llm_model,
model_kwargs=model_kwargs
)
memory = ConversationBufferMemory(
memory_key="chat_history",
output_key='answer',
return_messages=True
)
retriever = vector_db.as_retriever()
qa_chain = ConversationalRetrievalChain.from_llm(
llm,
retriever=retriever,
chain_type="stuff",
memory=memory,
return_source_documents=True,
verbose=False
)
progress(0.9, desc="Done!")
return qa_chain
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, db_progress):
list_file_path = [file.name for file in list_file_obj if file is not None]
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
vector_db = create_db(doc_splits, collection_name)
qa_chain = initialize_llmchain(
list_llm[0], # Using Mistral-7B-Instruct-v0.2 as the LLM model
0.7, # Temperature
1024, # Max Tokens
3, # Top K
vector_db,
db_progress
)
return vector_db, collection_name, qa_chain, "Complete!"
def upload_file(file_obj):
list_file_path = []
for file in file_obj:
if file is not None:
file_path = file.name
list_file_path.append(file_path)
return list_file_path
def demo():
with gr.Blocks(theme="base") as demo:
vector_db = gr.State()
collection_name = gr.State()
qa_chain = gr.State()
with gr.Tab("Step 1 - Document pre-processing"):
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
db_progress = gr.Textbox(label="Vector database initialization", value="None")
db_btn = gr.Button("Generate vector database...")
with gr.Tab("Step 2 - QA chain initialization"):
llm_progress = gr.Textbox(value="None", label="QA chain initialization")
qachain_btn = gr.Button("Initialize question-answering chain...")
with gr.Tab("Step 3 - Conversation with chatbot"):
chatbot = gr.Chatbot(height=300)
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
source1_page = gr.Number(label="Page", scale=1)
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
source2_page = gr.Number(label="Page", scale=1)
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
source3_page = gr.Number(label="Page", scale=1)
msg = gr.Textbox(placeholder="Type message", container=True)
submit_btn = gr.Button("Submit")
clear_btn = gr.ClearButton([msg, chatbot])
document.upload(initialize_demo, inputs=[document, slider_chunk_size, slider_chunk_overlap, db_progress], outputs=[vector_db, collection_name, qa_chain, db_progress])
qachain_btn.click(initialize_llmchain, inputs=[qa_chain, llm_progress], outputs=[qa_chain, llm_progress])
submit_btn.click(lambda: None, inputs=None, outputs=[chatbot, doc_source1, source1_page, doc_source2