Update app.py
Browse files
app.py
CHANGED
@@ -14,16 +14,7 @@ from langchain.llms import HuggingFaceHub
|
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
|
17 |
-
|
18 |
-
import transformers
|
19 |
-
import torch
|
20 |
-
import tqdm
|
21 |
-
import accelerate
|
22 |
-
|
23 |
-
# Update list of LLM models
|
24 |
-
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2"]
|
25 |
-
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
26 |
-
|
27 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
28 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
29 |
pages = []
|
@@ -35,6 +26,7 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
35 |
doc_splits = text_splitter.split_documents(pages)
|
36 |
return doc_splits
|
37 |
|
|
|
38 |
def create_db(splits, collection_name):
|
39 |
embedding = HuggingFaceEmbeddings()
|
40 |
new_client = chromadb.EphemeralClient()
|
@@ -46,6 +38,7 @@ def create_db(splits, collection_name):
|
|
46 |
)
|
47 |
return vectordb
|
48 |
|
|
|
49 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
50 |
llm = HuggingFaceHub(
|
51 |
repo_id=llm_model,
|
@@ -60,7 +53,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
60 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
61 |
llm,
|
62 |
retriever=retriever,
|
63 |
-
chain_type="stuff",
|
64 |
memory=memory,
|
65 |
return_source_documents=True,
|
66 |
verbose=False,
|
@@ -68,18 +61,20 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
68 |
progress(0.9, desc="Done!")
|
69 |
return qa_chain
|
70 |
|
71 |
-
|
|
|
72 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
73 |
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
|
74 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
75 |
vector_db = create_db(doc_splits, collection_name)
|
76 |
qa_chain = initialize_llmchain(
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
vector_db,
|
82 |
-
progress
|
|
|
83 |
return vector_db, collection_name, qa_chain, "Complete!"
|
84 |
|
85 |
def format_chat_history(message, chat_history):
|
@@ -105,13 +100,6 @@ def conversation(qa_chain, message, history):
|
|
105 |
new_history = history + [(message, response_answer)]
|
106 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
107 |
|
108 |
-
def upload_file(file_obj):
|
109 |
-
list_file_path = []
|
110 |
-
for idx, file in enumerate(file_obj):
|
111 |
-
file_path = file_obj.name
|
112 |
-
list_file_path.append(file_path)
|
113 |
-
return list_file_path
|
114 |
-
|
115 |
def demo():
|
116 |
with gr.Blocks(theme="base") as demo:
|
117 |
vector_db = gr.State()
|
@@ -125,21 +113,25 @@ def demo():
|
|
125 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
126 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
127 |
""")
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
|
|
|
|
|
|
|
|
|
14 |
from pathlib import Path
|
15 |
import chromadb
|
16 |
|
17 |
+
# Load PDF document and create doc splits
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
19 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
20 |
pages = []
|
|
|
26 |
doc_splits = text_splitter.split_documents(pages)
|
27 |
return doc_splits
|
28 |
|
29 |
+
# Create vector database
|
30 |
def create_db(splits, collection_name):
|
31 |
embedding = HuggingFaceEmbeddings()
|
32 |
new_client = chromadb.EphemeralClient()
|
|
|
38 |
)
|
39 |
return vectordb
|
40 |
|
41 |
+
# Initialize langchain LLM chain
|
42 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
43 |
llm = HuggingFaceHub(
|
44 |
repo_id=llm_model,
|
|
|
53 |
qa_chain = ConversationalRetrievalChain.from_llm(
|
54 |
llm,
|
55 |
retriever=retriever,
|
56 |
+
chain_type="stuff",
|
57 |
memory=memory,
|
58 |
return_source_documents=True,
|
59 |
verbose=False,
|
|
|
61 |
progress(0.9, desc="Done!")
|
62 |
return qa_chain
|
63 |
|
64 |
+
# Initialize database and LLM chain
|
65 |
+
def initialize_demo(list_file_obj, chunk_size, chunk_overlap, progress=gr.Progress()):
|
66 |
list_file_path = [x.name for x in list_file_obj if x is not None]
|
67 |
collection_name = Path(list_file_path[0]).stem.replace(" ", "-")[:50]
|
68 |
doc_splits = load_doc(list_file_path, chunk_size, chunk_overlap)
|
69 |
vector_db = create_db(doc_splits, collection_name)
|
70 |
qa_chain = initialize_llmchain(
|
71 |
+
"mistralai/Mistral-7B-Instruct-v0.2",
|
72 |
+
0.7,
|
73 |
+
1024,
|
74 |
+
3,
|
75 |
+
vector_db,
|
76 |
+
progress
|
77 |
+
)
|
78 |
return vector_db, collection_name, qa_chain, "Complete!"
|
79 |
|
80 |
def format_chat_history(message, chat_history):
|
|
|
100 |
new_history = history + [(message, response_answer)]
|
101 |
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
|
102 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
def demo():
|
104 |
with gr.Blocks(theme="base") as demo:
|
105 |
vector_db = gr.State()
|
|
|
113 |
When generating answers, it takes past questions into account (via conversational memory), and includes document references for clarity purposes.</i>
|
114 |
<br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate an output.<br>
|
115 |
""")
|
116 |
+
|
117 |
+
document = gr.Files(height=100, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload your PDF documents (single or multiple)")
|
118 |
+
slider_chunk_size = gr.Slider(minimum=100, maximum=1000, value=600, step=20, label="Chunk size", info="Chunk size", interactive=True)
|
119 |
+
slider_chunk_overlap = gr.Slider(minimum=10, maximum=200, value=40, step=10, label="Chunk overlap", info="Chunk overlap", interactive=True)
|
120 |
+
db_progress = gr.Textbox(label="Vector database initialization", value="None")
|
121 |
+
|
122 |
+
# Initialize vector database and LLM chain in the background
|
123 |
+
vector_db, collection_name, qa_chain, status = initialize_demo([document], slider_chunk_size, slider_chunk_overlap, db_progress)
|
124 |
+
|
125 |
+
chatbot = gr.Chatbot(height=300)
|
126 |
+
msg = gr.Textbox(placeholder="Type message", container=True)
|
127 |
+
submit_btn = gr.Button("Submit")
|
128 |
+
clear_btn = gr.ClearButton([msg, chatbot])
|
129 |
+
|
130 |
+
msg.submit(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
|
131 |
+
submit_btn.click(conversation, inputs=[qa_chain, msg, chatbot], outputs=[qa_chain, msg, chatbot], queue=False)
|
132 |
+
clear_btn.click(lambda:[None,"",0,"",0,"",0], inputs=None, outputs=[chatbot], queue=False)
|
133 |
+
|
134 |
+
demo.queue().launch(debug=True)
|
135 |
+
|
136 |
+
if __name__ == "__main__":
|
137 |
+
demo()
|