File size: 3,360 Bytes
7c70a38
c0fd3bb
7c70a38
c0fd3bb
daae4bc
 
c0fd3bb
daae4bc
 
c0fd3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daae4bc
c0fd3bb
 
 
 
 
 
daae4bc
 
c0fd3bb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
daae4bc
c0fd3bb
 
daae4bc
c0fd3bb
daae4bc
7c70a38
7e3eb15
348e46a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
import cv2
import mediapipe as mp
import numpy as np
from flask import Flask, render_template, request
import tensorflow as tf

# Initialize the Flask app
app = Flask(__name__)

# Initialize Mediapipe for face detection
mp_face_detection = mp.solutions.face_detection
mp_drawing = mp.solutions.drawing_utils

# Load AI models for skin care, health, makeup, and fashion recommendations
# You should have these models pre-trained and available
# For simplicity, placeholders are used
skin_care_model = tf.keras.models.load_model('skin_care_model.h5')  # Example placeholder
makeup_model = tf.keras.models.load_model('makeup_model.h5')        # Example placeholder
health_model = tf.keras.models.load_model('health_model.h5')        # Example placeholder
fashion_model = tf.keras.models.load_model('fashion_model.h5')      # Example placeholder

# Function to detect faces using Mediapipe
def detect_faces(image):
    with mp_face_detection.FaceDetection(min_detection_confidence=0.2) as face_detection:
        # Convert the image to RGB for Mediapipe
        rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        results = face_detection.process(rgb_image)
        if results.detections:
            for detection in results.detections:
                bboxC = detection.location_data.relative_bounding_box
                ih, iw, _ = image.shape
                x, y, w, h = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih)
                cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2)
    return image

# Placeholder recommendation functions (you should replace these with actual AI models)
def get_skin_care_recommendation(face_image):
    # Analyze the skin condition (dummy function for example)
    return "Recommended product: Vitamin C Serum"

def get_makeup_recommendation(face_image):
    # Suggest makeup based on facial features (dummy function for example)
    return "Suggested makeup: Natural look foundation"

def get_health_recommendation(face_image):
    # Analyze health metrics (dummy function for example)
    return "Health alert: Normal blood pressure"

def get_fashion_recommendation(face_image):
    # Suggest outfits based on style and weather (dummy function for example)
    return "Suggested outfit: Casual wear suitable for sunny weather"

# Route to handle the display of the mirror and recommendations
@app.route('/')
def index():
    return render_template('index.html')  # Add your HTML file here

@app.route('/capture', methods=['POST'])
def capture():
    # Capture an image from the webcam
    cap = cv2.VideoCapture(0)
    ret, frame = cap.read()
    if not ret:
        return "Failed to capture image", 400

    # Process the captured frame to detect faces and provide recommendations
    frame = detect_faces(frame)

    # Extract personalized recommendations (example placeholders)
    skin_care = get_skin_care_recommendation(frame)
    makeup = get_makeup_recommendation(frame)
    health = get_health_recommendation(frame)
    fashion = get_fashion_recommendation(frame)

    # Return recommendations as response
    recommendations = {
        'skin_care': skin_care,
        'makeup': makeup,
        'health': health,
        'fashion': fashion
    }

    cap.release()
    return recommendations

if __name__ == "__main__":
    app.run(debug=True)