Spaces:
Build error
Build error
import cv2 | |
import mediapipe as mp | |
import numpy as np | |
from flask import Flask, render_template, request | |
import tensorflow as tf | |
# Initialize the Flask app | |
app = Flask(__name__) | |
# Initialize Mediapipe for face detection | |
mp_face_detection = mp.solutions.face_detection | |
mp_drawing = mp.solutions.drawing_utils | |
# Load AI models for skin care, health, makeup, and fashion recommendations | |
# You should have these models pre-trained and available | |
# For simplicity, placeholders are used | |
skin_care_model = tf.keras.models.load_model('skin_care_model.h5') # Example placeholder | |
makeup_model = tf.keras.models.load_model('makeup_model.h5') # Example placeholder | |
health_model = tf.keras.models.load_model('health_model.h5') # Example placeholder | |
fashion_model = tf.keras.models.load_model('fashion_model.h5') # Example placeholder | |
# Function to detect faces using Mediapipe | |
def detect_faces(image): | |
with mp_face_detection.FaceDetection(min_detection_confidence=0.2) as face_detection: | |
# Convert the image to RGB for Mediapipe | |
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | |
results = face_detection.process(rgb_image) | |
if results.detections: | |
for detection in results.detections: | |
bboxC = detection.location_data.relative_bounding_box | |
ih, iw, _ = image.shape | |
x, y, w, h = int(bboxC.xmin * iw), int(bboxC.ymin * ih), int(bboxC.width * iw), int(bboxC.height * ih) | |
cv2.rectangle(image, (x, y), (x + w, y + h), (255, 0, 0), 2) | |
return image | |
# Placeholder recommendation functions (you should replace these with actual AI models) | |
def get_skin_care_recommendation(face_image): | |
# Analyze the skin condition (dummy function for example) | |
return "Recommended product: Vitamin C Serum" | |
def get_makeup_recommendation(face_image): | |
# Suggest makeup based on facial features (dummy function for example) | |
return "Suggested makeup: Natural look foundation" | |
def get_health_recommendation(face_image): | |
# Analyze health metrics (dummy function for example) | |
return "Health alert: Normal blood pressure" | |
def get_fashion_recommendation(face_image): | |
# Suggest outfits based on style and weather (dummy function for example) | |
return "Suggested outfit: Casual wear suitable for sunny weather" | |
# Route to handle the display of the mirror and recommendations | |
def index(): | |
return render_template('index.html') # Add your HTML file here | |
def capture(): | |
# Capture an image from the webcam | |
cap = cv2.VideoCapture(0) | |
ret, frame = cap.read() | |
if not ret: | |
return "Failed to capture image", 400 | |
# Process the captured frame to detect faces and provide recommendations | |
frame = detect_faces(frame) | |
# Extract personalized recommendations (example placeholders) | |
skin_care = get_skin_care_recommendation(frame) | |
makeup = get_makeup_recommendation(frame) | |
health = get_health_recommendation(frame) | |
fashion = get_fashion_recommendation(frame) | |
# Return recommendations as response | |
recommendations = { | |
'skin_care': skin_care, | |
'makeup': makeup, | |
'health': health, | |
'fashion': fashion | |
} | |
cap.release() | |
return recommendations | |
if __name__ == "__main__": | |
app.run(debug=True) | |