File size: 5,332 Bytes
4a5279c
63f5111
4a5279c
 
 
 
63f5111
 
 
 
 
 
 
 
4a5279c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
63f5111
 
 
4a5279c
 
63f5111
 
 
 
4a5279c
 
 
 
 
 
 
 
 
 
63f5111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5279c
63f5111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a5279c
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
import os
import streamlit as st
import PyPDF2
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer, AutoModelForCausalLM
from langchain.chains import ConversationalRetrievalChain
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import HuggingFacePipeline
from langchain.prompts import PromptTemplate
from transformers import pipeline

# Load embedding model
@st.cache_resource
def load_embedding_model():
    return SentenceTransformer("all-MiniLM-L6-v2")

# Parse PDF file
def parse_pdf(file):
    pdf_reader = PyPDF2.PdfReader(file)
    text = ""
    for page in pdf_reader.pages:
        text += page.extract_text()
    return text

# Split text into chunks
def split_text(text, chunk_size=500, chunk_overlap=100):
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    return text_splitter.split_text(text)

# Create FAISS index
def create_faiss_index(texts, embedding_model):
    embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    vectorstore = FAISS.from_texts(texts, embeddings)
    return vectorstore

# Generate response from the model
def generate_response(prompt, model, tokenizer):
    inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
    outputs = model.generate(**inputs, max_length=512, num_return_sequences=1)
    response = tokenizer.decode(outputs[0], skip_special_tokens=True)
    return response

# Main Streamlit app
def main():
    st.title("Advanced Chat with Your Document")

    # Initialize session state for conversation history and documents
    if "conversation_history" not in st.session_state:
        st.session_state.conversation_history = []
    if "vectorstore" not in st.session_state:
        st.session_state.vectorstore = None

    # Step 1: Upload multiple PDF files
    uploaded_files = st.file_uploader("Upload PDF files", type=["pdf"], accept_multiple_files=True)
    if uploaded_files:
        st.write(f"{len(uploaded_files)} file(s) uploaded successfully!")

        # Process PDFs
        with st.spinner("Processing PDFs..."):
            all_texts = []
            for uploaded_file in uploaded_files:
                pdf_text = parse_pdf(uploaded_file)
                chunks = split_text(pdf_text)
                all_texts.extend(chunks)

            # Create a unified vector database
            embedding_model = load_embedding_model()
            st.session_state.vectorstore = create_faiss_index(all_texts, embedding_model)

        st.success("PDFs processed! You can now ask questions.")

    # Step 2: Chat interface
    user_input = st.text_input("Ask a question about the document(s):")
    if user_input:
        if st.session_state.vectorstore is None:
            st.error("Please upload and process documents first.")
            return

        with st.spinner("Generating response..."):
            # Load the LLM
            model_name = "meta-llama/Llama-2-7b-chat-hf"  # Replace with your local path
            tokenizer = AutoTokenizer.from_pretrained(model_name)
            model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16)

            # Set up LangChain components
            retriever = st.session_state.vectorstore.as_retriever()
            llm = HuggingFacePipeline(pipeline=pipeline("text-generation", model=model, tokenizer=tokenizer))

            # Define a custom prompt template for Chain-of-Thought reasoning
            prompt_template = """
            Answer the following question based ONLY on the provided context.
            If the question requires multi-step reasoning, break it down step by step.
            Context: {context}
            Question: {question}
            Answer:
            """
            prompt = PromptTemplate(template=prompt_template, input_variables=["context", "question"])

            # Create a conversational retrieval chain
            qa_chain = ConversationalRetrievalChain.from_llm(
                llm=llm,
                retriever=retriever,
                combine_docs_chain_kwargs={"prompt": prompt},
                return_source_documents=True
            )

            # Add conversation history
            chat_history = st.session_state.conversation_history[-3:]  # Last 3 interactions
            result = qa_chain({"question": user_input, "chat_history": chat_history})

            # Extract response and update conversation history
            response = result["answer"]
            st.session_state.conversation_history.append(f"User: {user_input}")
            st.session_state.conversation_history.append(f"Bot: {response}")

        st.write(f"**Response:** {response}")

        # Display source documents (optional)
        if "source_documents" in result:
            st.subheader("Source Documents")
            for doc in result["source_documents"]:
                st.write(doc.page_content)

        # Display conversation history
        st.subheader("Conversation History")
        for line in st.session_state.conversation_history:
            st.write(line)

if __name__ == "__main__":
    main()