Alioth86's picture
Add application file
c14f8d7
raw
history blame
6.79 kB
import gradio as gr
import transformers
from transformers import pipeline
import PyPDF2
import pdfplumber
from pdfminer.high_level import extract_pages, extract_text
from pdfminer.layout import LTTextContainer, LTChar, LTRect, LTFigure
import re
import torch
from datasets import load_dataset
import soundfile as sf
from IPython.display import Audio
import numpy as np
from datasets import load_dataset
import sentencepiece as spm
import os
import tempfile
def text_extraction(element):
# Extracting the text from the in-line text element
line_text = element.get_text()
# Find the formats of the text
# Initialize the list with all the formats that appeared in the line of text
line_formats = []
for text_line in element:
if isinstance(text_line, LTTextContainer):
# Iterating through each character in the line of text
for character in text_line:
if isinstance(character, LTChar):
# Append the font name of the character
line_formats.append(character.fontname)
# Append the font size of the character
line_formats.append(character.size)
# Find the unique font sizes and names in the line
format_per_line = list(set(line_formats))
# Return a tuple with the text in each line along with its format
return (line_text, format_per_line)
def read_pdf(pdf_pathy):
# create a PDF file object
pdfFileObj = open(pdf_pathy, 'rb')
# create a PDF reader object
pdfReaded = PyPDF2.PdfReader(pdfFileObj)
# Create the dictionary to extract text from each image
text_per_pagy = {}
# We extract the pages from the PDF
for pagenum, page in enumerate(extract_pages(pdf_pathy)):
print("Elaborating Page_" +str(pagenum))
# Initialize the variables needed for the text extraction from the page
pageObj = pdfReaded.pages[pagenum]
page_text = []
line_format = []
page_content = []
# Open the pdf file
pdf = pdfplumber.open(pdf_pathy)
# Find all the elements
page_elements = [(element.y1, element) for element in page._objs]
# Sort all the elements as they appear in the page
page_elements.sort(key=lambda a: a[0], reverse=True)
# Find the elements that composed a page
for i,component in enumerate(page_elements):
# Extract the position of the top side of the element in the PDF
pos= component[0]
# Extract the element of the page layout
element = component[1]
# Check if the element is a text element
if isinstance(element, LTTextContainer):
# Check if the text appeared in a table
# Use the function to extract the text and format for each text element
(line_text, format_per_line) = text_extraction(element)
# Append the text of each line to the page text
page_text.append(line_text)
# Append the format for each line containing text
line_format.append(format_per_line)
page_content.append(line_text)
# Create the key of the dictionary
dctkey = 'Page_'+str(pagenum)
# Add the list of list as the value of the page key
text_per_pagy[dctkey]= [page_text, line_format, page_content]
# Closing the pdf file object
pdfFileObj.close()
return text_per_pagy
#performing a cleaning of the contents
import re
def clean_text(text):
# remove extra spaces
text = re.sub(r'\s+', ' ', text)
return text.strip()
def extract_abstract(text_per_pagy):
abstract_text = ""
#iterate through each page in the extracted text dictionary
for page_num, page_text in text_per_pagy.items():
if page_text:
# Replace hyphens used for line breaks
page_text = page_text.replace("- ", "")
# Looking for the start of the abstract
start_index = page_text.find("Abstract")
if start_index != -1:
# Adjust the start index to exclude the word "Abstract" itself
# The length of "Abstract" is 8 characters; we also add 1 to skip the space after it
start_index += len("Abstract") + 1
# Searching the possible end markers of the abstract
end_markers = ["Introduction", "Summary", "Overview", "Background"]
end_index = -1
for marker in end_markers:
temp_index = page_text.find(marker, start_index)
if temp_index != -1:
end_index = temp_index
break
# If no end marker found, take entire text after "Abstract"
if end_index == -1:
end_index = len(page_text)
# Extract the abstract text
abstract = page_text[start_index:end_index].strip()
# Add the abstract to the complete text
abstract_text += " " + abstract
break
return abstract_text
def main_function(uploaded_filepath):
#a control to see if there is a file uploaded
if uploaded_filepath is None:
return "No file loaded", None
#read and process the file
text_per_pagy = read_pdf(uploaded_filepath)
#cleaning the text and getting the abstract
for key, value in text_per_pagy.items():
cleaned_text = clean_text(' '.join(value[0]))
text_per_pagy[key] = cleaned_text
abstract_text = extract_abstract(text_per_pagy)
#abstract summary
summarizer = pipeline("summarization", model="pszemraj/long-t5-tglobal-base-sci-simplify")
summary = summarizer(abstract_text, max_length=50, min_length=30, do_sample=False)[0]['summary_text']
#generating the audio from the text, with my pipeline and model
synthesiser = pipeline("text-to-speech", model="microsoft/speecht5_tts")
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
speaker_embedding = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
speech = synthesiser(summary, forward_params={"speaker_embeddings": speaker_embedding})
#saving the audio in a temp file
audio_file_path = "summary.wav"
sf.write(audio_file_path, speech["audio"], samplerate=speech["sampling_rate"])
#the function returns the 2 pieces we need
return summary, audio_file_path
iface = gr.Interface(
fn=main_function,
inputs=gr.File(type="filepath"), # Cambiato da "pdf" a "file"
outputs=[gr.Textbox(label="Summary Text"), gr.Audio(label="Summary Audio", type="filepath")]
)
# Avvia l'app
if __name__ == "__main__":
iface.launch()