File size: 21,138 Bytes
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f775b6f
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f775b6f
8a14598
f775b6f
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
88a82cf
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e6f7a00
8a14598
 
 
 
 
 
 
 
 
 
 
 
f775b6f
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f775b6f
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a32e82
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f775b6f
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ad441d
8a14598
 
 
4ad441d
8a14598
 
 
 
 
 
 
 
 
 
0004c83
8a14598
 
f775b6f
 
 
8a14598
f775b6f
 
8a14598
 
f775b6f
8a14598
 
 
 
 
 
 
88a82cf
8a14598
 
 
 
 
 
 
 
88a82cf
8a14598
 
 
 
 
 
 
 
 
 
e6f7a00
 
8a14598
ec462e8
8a14598
 
 
 
 
e6f7a00
8a14598
 
 
 
 
 
0004c83
8a14598
 
 
22bca50
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0004c83
8a14598
 
 
 
 
22bca50
8a14598
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a32e82
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
import os

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split

from concrete.ml.sklearn import RandomForestClassifier as ConcreteRandomForestClassifier

import gradio as gr

from utils import (
    CLIENT_DIR,
    CURRENT_DIR,
    DEPLOYMENT_DIR,
    INPUT_BROWSER_LIMIT,
    KEYS_DIR,
    SERVER_URL,
    clean_directory,
)

import requests
import subprocess
import time
from typing import Dict, List, Tuple

from concrete.ml.deployment import FHEModelClient

subprocess.Popen(["uvicorn", "server:app"], cwd=CURRENT_DIR)
time.sleep(3)

current_dir = os.path.dirname(os.path.realpath(__file__))
data = pd.read_csv(os.path.join(current_dir, "files/titanic.csv"))

def is_none(obj) -> bool:
    """
    Check if the object is None.

    Args:
        obj (any): The input to be checked.

    Returns:
        bool: True if the object is None or empty, False otherwise.
    """
    return obj is None or (obj is not None and len(obj) < 1)

def encode_age(df):
    df.Age = df.Age.fillna(-0.5)
    bins = (-1, 0, 5, 12, 18, 25, 35, 60, 120)
    categories = pd.cut(df.Age, bins, labels=False)
    df.Age = categories
    return df


def encode_fare(df):
    df.Fare = df.Fare.fillna(-0.5)
    bins = (-1, 0, 8, 15, 31, 1000)
    categories = pd.cut(df.Fare, bins, labels=False)
    df.Fare = categories
    return df


def encode_df(df):
    df = encode_age(df)
    df = encode_fare(df)
    sex_mapping = {"male": 0, "female": 1}
    df = df.replace({"Sex": sex_mapping})
    embark_mapping = {"S": 1, "C": 2, "Q": 3}
    df = df.replace({"Embarked": embark_mapping})
    df.Embarked = df.Embarked.fillna(0)
    df["Company"] = 0
    df.loc[(df["SibSp"] > 0), "Company"] = 1
    df.loc[(df["Parch"] > 0), "Company"] = 2
    df.loc[(df["SibSp"] > 0) & (df["Parch"] > 0), "Company"] = 3
    df = df[
        [
            "PassengerId",
            "Pclass",
            "Sex",
            "Age",
            "Fare",
            "Embarked",
            "Company",
            "Survived",
        ]
    ]
    return df


train = encode_df(data)

X_all = train.drop(["Survived", "PassengerId"], axis=1)
y_all = train["Survived"]

num_test = 0.20
X_train, X_test, y_train, y_test = train_test_split(
    X_all, y_all, test_size=num_test, random_state=23
)

clf = RandomForestClassifier()
clf.fit(X_train, y_train)
predictions = clf.predict(X_test)

n_estimators = 50
max_depth = 4
n_bits = 6
n_jobs_xgb = 1
n_jobs_gridsearch = -1
concrete_clf = ConcreteRandomForestClassifier(
    n_bits=n_bits, n_estimators=n_estimators, max_depth=max_depth, n_jobs=n_jobs_xgb
)
concrete_clf.fit(X_train, y_train)
concrete_predictions = concrete_clf.predict(X_test)

def predict_survival(passenger_class, is_male, age, company, fare, embark_point):
    if passenger_class is None or embark_point is None:
        return None
    df = pd.DataFrame.from_dict(
        {
            "Pclass": [passenger_class + 1],
            "Sex": [0 if is_male else 1],
            "Age": [age],
            "Fare": [fare],
            "Embarked": [embark_point + 1],
            "Company": [
                (1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
            ]
        }
    )
    df = encode_age(df)
    df = encode_fare(df)
    pred = clf.predict_proba(df)[0]
    return {"Perishes": float(pred[0]), "Survives": float(pred[1])}

def collect_input(passenger_class, is_male, age, company, fare, embark_point):
    if passenger_class is None or embark_point is None:
        return None
    input_dict = {
            "Pclass": [passenger_class + 1],
            "Sex": [0 if is_male else 1],
            "Age": [age],
            "Fare": [fare],
            "Embarked": [embark_point + 1],
            "Company": [
                (1 if "Sibling" in company else 0) + (2 if "Child" in company else 0)
            ]
        }
    # print(input_dict)
    return input_dict

def clear_predict_survival(input_dict):
    df = pd.DataFrame.from_dict(input_dict)
    df = encode_age(df)
    df = encode_fare(df)
    pred = clf.predict_proba(df)[0]
    return {"Perishes": float(pred[0]), "Survives": float(pred[1])}

def concrete_predict_survival(input_dict):
    df = pd.DataFrame.from_dict(input_dict)
    df = encode_age(df)
    df = encode_fare(df)
    pred = concrete_clf.predict_proba(df)[0]
    return {"Perishes": float(pred[0]), "Survives": float(pred[1])}

# print("\nclear_test    ", clear_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]}))

# print("encrypted_test", concrete_predict_survival({'Pclass': [1], 'Sex': [0], 'Age': [25], 'Fare': [20.0], 'Embarked': [2], 'Company': [1]}),"\n")


def key_gen_fn() -> Dict:
    """
    Generate keys for a given user.

    Args:
        
    Returns:
        dict: A dictionary containing the generated keys and related information.

    """
    clean_directory()

    # Generate a random user ID
    user_id = np.random.randint(0, 2**32)
    print(f"Your user ID is: {user_id}....")

    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    # Creates the private and evaluation keys on the client side
    client.generate_private_and_evaluation_keys()

    # Get the serialized evaluation keys
    serialized_evaluation_keys = client.get_serialized_evaluation_keys()
    assert isinstance(serialized_evaluation_keys, bytes)

    # Save the evaluation key
    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    with evaluation_key_path.open("wb") as f:
        f.write(serialized_evaluation_keys)

    serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]

    return {
        error_box2: gr.update(visible=False),
        key_box: gr.update(visible=True, value=serialized_evaluation_keys_shorten_hex),
        user_id_box: gr.update(visible=True, value=user_id),
        key_len_box: gr.update(
            visible=False, value=f"{len(serialized_evaluation_keys) / (10**6):.2f} MB"
        ),
    }

def encrypt_fn(user_inputs: np.ndarray, user_id: str) -> None:
    """
    """

    if is_none(user_id) or is_none(user_inputs):
        print("Error in encryption step: Provide your inputs and generate the evaluation keys.")
        return {
            error_box3: gr.update(
                visible=True,
                value="⚠️ Please ensure that your inputs have been submitted and "
                "that you have generated the evaluation key.",
            )
        }

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()
    
    user_inputs_df = pd.DataFrame.from_dict(user_inputs)
    user_inputs_df = encode_age(user_inputs_df)
    user_inputs_df = encode_fare(user_inputs_df)

    print("user_inputs to be encrypted =\n", user_inputs_df)
    print("user_inputs to be encrypted =\n", user_inputs_df.to_numpy())
    
    encrypted_quantized_user_inputs = client.quantize_encrypt_serialize(user_inputs_df.to_numpy())

    assert isinstance(encrypted_quantized_user_inputs, bytes)
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"

    with encrypted_input_path.open("wb") as f:
        f.write(encrypted_quantized_user_inputs)

    encrypted_quantized_user_inputs_shorten_hex = encrypted_quantized_user_inputs.hex()[
        :INPUT_BROWSER_LIMIT
    ]

    return {
        error_box3: gr.update(visible=False),
        input_dict_box: gr.update(visible=False, value=user_inputs),
        enc_dict_box: gr.update(visible=True, value=encrypted_quantized_user_inputs_shorten_hex),
    }

def send_input_fn(user_id: str, user_inputs: np.ndarray) -> Dict:
    """Send the encrypted data and the evaluation key to the server.
    """

    if is_none(user_id) or is_none(user_inputs):
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the inputs have been submitted and the evaluation "
                "key has been generated before sending the data to the server.",
            )
        }

    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"

    if not evaluation_key_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )

        return {
            error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.")
        }

    if not encrypted_input_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please encrypt the data with the private key first.",
            ),
        }

    # Define the data and files to post
    data = {
        "user_id": user_id,
        "input": user_inputs,
    }

    files = [
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(evaluation_key_path, "rb")),
    ]

    # Send the encrypted input and evaluation key to the server
    url = SERVER_URL + "send_input"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        print(f"Sending Data: {response.ok=}")
    return {
        error_box4: gr.update(visible=False),
        srv_resp_send_data_box: "Data sent",
    }

def run_fhe_fn(user_id: str) -> Dict:
    """Send the encrypted input and the evaluation key to the server.

    Args:
        user_id (int): The current user's ID.
    """
    if is_none(user_id):
        return {
            error_box5: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the inputs have been submitted, the evaluation "
                "key has been generated and the server received the data "
                "before processing the data.",
            ),
            fhe_execution_time_box: None,
        }

    data = {
        "user_id": user_id,
    }

    url = SERVER_URL + "run_fhe"

    with requests.post(
        url=url,
        data=data,
    ) as response:
        if not response.ok:
            return {
                error_box5: gr.update(
                    visible=True,
                    value=(
                        "⚠️ An error occurred on the Server Side. "
                        "Please check connectivity and data transmission."
                    ),
                ),
                fhe_execution_time_box: gr.update(visible=False),
            }
        else:
            time.sleep(10)
            print(f"response.ok: {response.ok}, {response.json()} - Computed")

    return {
        error_box5: gr.update(visible=False),
        fhe_execution_time_box: gr.update(visible=True, value=f"{response.json():.2f} seconds"),
    }

def send_input_fn(user_id: str, user_inputs: np.ndarray) -> Dict:
    """Send the encrypted data and the evaluation key to the server.
    """

    if is_none(user_id) or is_none(user_inputs):
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the inputs have been submitted and the evaluation "
                "key has been generated before sending the data to the server.",
            )
        }

    evaluation_key_path = KEYS_DIR / f"{user_id}/evaluation_key"
    encrypted_input_path = KEYS_DIR / f"{user_id}/encrypted_input"

    if not evaluation_key_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: "
            f"The key has been generated correctly - {evaluation_key_path.is_file()=}"
        )

        return {
            error_box4: gr.update(visible=True, value="⚠️ Please generate the private key first.")
        }

    if not encrypted_input_path.is_file():
        print(
            "Error Encountered While Sending Data to the Server: The data has not been encrypted "
            f"correctly on the client side - {encrypted_input_path.is_file()=}"
        )
        return {
            error_box4: gr.update(
                visible=True,
                value="⚠️ Please encrypt the data with the private key first.",
            ),
        }

    # Define the data and files to post
    data = {
        "user_id": user_id,
        "input": user_inputs,
    }

    files = [
        ("files", open(encrypted_input_path, "rb")),
        ("files", open(evaluation_key_path, "rb")),
    ]

    # Send the encrypted input and evaluation key to the server
    url = SERVER_URL + "send_input"
    with requests.post(
        url=url,
        data=data,
        files=files,
    ) as response:
        print(f"Sending Data: {response.ok=}")
    return {
        error_box4: gr.update(visible=False),
        srv_resp_send_data_box: "Data sent",
    }

def get_output_fn(user_id: str, user_inputs: np.ndarray) -> Dict:
    """Retreive the encrypted data from the server.
    """

    if is_none(user_id) or is_none(user_inputs):
        return {
            error_box6: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the server has successfully processed and transmitted the data to the client.",
            )
        }

    data = {
        "user_id": user_id,
    }

    # Retrieve the encrypted output
    url = SERVER_URL + "get_output"
    with requests.post(
        url=url,
        data=data,
    ) as response:
        if response.ok:
            print(f"Receive Data: {response.ok=}")

            encrypted_output = response.content

            # Save the encrypted output to bytes in a file as it is too large to pass through
            # regular Gradio buttons (see https://github.com/gradio-app/gradio/issues/1877)
            encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

            with encrypted_output_path.open("wb") as f:
                f.write(encrypted_output)
    return {error_box6: gr.update(visible=False), srv_resp_retrieve_data_box: "Data received"}

def decrypt_fn(user_id: str, user_inputs: np.ndarray) -> Dict:
    """Dencrypt the data on the `Client Side`.
    Args:
        user_id (str): The current user's ID
        user_inputs (np.ndarray): The user inputs
    Returns:
        Decrypted output
    """

    if is_none(user_id) or is_none(user_inputs):
        return {
            error_box7: gr.update(
                visible=True,
                value="⚠️ Please check your connectivity \n"
                "⚠️ Ensure that the client has successfully received the data from the server.",
            )
        }

    # Get the encrypted output path
    encrypted_output_path = CLIENT_DIR / f"{user_id}_encrypted_output"

    if not encrypted_output_path.is_file():
        print("Error in decryption step: Please run the FHE execution, first.")
        return {
            error_box7: gr.update(
                visible=True,
                value="⚠️ Please ensure that: \n"
                "- the connectivity \n"
                "- the inputs have been submitted \n"
                "- the evaluation key has been generated \n"
                "- the server processed the encrypted data \n"
                "- the Client received the data from the Server before decrypting the prediction",
            ),
            decrypt_box: None,
        }

    # Load the encrypted output as bytes
    with encrypted_output_path.open("rb") as f:
        encrypted_output = f.read()

    # Retrieve the client API
    client = FHEModelClient(path_dir=DEPLOYMENT_DIR, key_dir=KEYS_DIR / f"{user_id}")
    client.load()

    # Deserialize, decrypt and post-process the encrypted output
    output = client.deserialize_decrypt_dequantize(encrypted_output)

    print("output =\n", output)

    out = {"Perishes": float(output[0][0]), "Survives": float(output[0][1])}

    print("output =\n", out)

    return {
        error_box7: gr.update(visible=False),
        decrypt_box: out,
        label: out,
    }

with gr.Blocks() as demo:

    # Step 1.1: Provide inputs
    gr.Markdown("### Titanic Survival Prediction with ML and Private Computation")
    with gr.Row():
        inp = [
                gr.Dropdown(["first", "second", "third"], type="index", label="Select Passenger Class"),
                gr.Checkbox(label="Male?"),
                gr.Slider(0, 80, value=25, label="Age", step=1),
                gr.CheckboxGroup(["Sibling", "Child"], label="Travelling with (select all)"),
                gr.Number(value=20, label="Fare"),
                gr.Radio(["Southampton", "Cherbourg", "Queenstown"], type="index", label="Embark point:"),
            ]
        out = gr.JSON()
    btn = gr.Button("Confirm inputs")
    btn.click(fn=collect_input, inputs=inp, outputs=out)

    # Step 2.1: Key generation

    gen_key_btn = gr.Button("Generate the evaluation key")
    error_box2 = gr.Textbox(label="Error ❌", visible=False)
    user_id_box = gr.Textbox(label="User ID:", visible=True)
    key_len_box = gr.Textbox(label="Evaluation Key Size:", visible=False)
    key_box = gr.Textbox(label="Evaluation key (truncated):", max_lines=3, visible=False)

    gen_key_btn.click(
        key_gen_fn,
        inputs=None,
        outputs=[
            key_box,
            user_id_box,
            key_len_box,
            error_box2,
        ],
    )

    # # Step 2.2: Encrypt data locally
    gr.Markdown("### Encrypt the data")
    encrypt_btn = gr.Button("Encrypt the data using the private secret key")
    error_box3 = gr.Textbox(label="Error ❌", visible=False)

    with gr.Row():
        with gr.Column():
            input_dict_box = gr.Textbox(label="input_dict_box:", max_lines=10)
        with gr.Column():
            enc_dict_box = gr.Textbox(label="encrypted input_dict_box:", max_lines=10)

    encrypt_btn.click(
        encrypt_fn,
        inputs=[out, user_id_box],
        outputs=[
            input_dict_box,
            enc_dict_box,
            error_box3,
        ],
    )
    # # Step 2.3: Send encrypted data to the server
    gr.Markdown(
        "### Send the encrypted data to the Server Side"
    )
    error_box4 = gr.Textbox(label="Error ❌", visible=False)

    with gr.Row():
        with gr.Column(scale=4):
            send_input_btn = gr.Button("Send data")
        with gr.Column(scale=1):
            srv_resp_send_data_box = gr.Checkbox(label="Data Sent", show_label=False)

    send_input_btn.click(
        send_input_fn,
        inputs=[user_id_box, out],
        outputs=[error_box4, srv_resp_send_data_box],
    )

    # ------------------------- Step 3 -------------------------
    gr.Markdown("\n")
    gr.Markdown("## Step 3: Run the FHE evaluation")
    gr.Markdown("<hr />")
    gr.Markdown("<span style='color:grey'>Server Side</span>")
    gr.Markdown(
        "Once the server receives the encrypted data, it can process and compute the output without ever decrypting the data just as it would on clear data.\n\n"
    )

    run_fhe_btn = gr.Button("Run the FHE evaluation")
    error_box5 = gr.Textbox(label="Error ❌", visible=False)
    fhe_execution_time_box = gr.Textbox(label="Total FHE Execution Time:", visible=True)
    run_fhe_btn.click(
        run_fhe_fn,
        inputs=[user_id_box],
        outputs=[fhe_execution_time_box, error_box5],
    )

    # ------------------------- Step 4 -------------------------
    gr.Markdown("\n")
    gr.Markdown("## Step 4: Decrypt the data")
    gr.Markdown("<hr />")
    gr.Markdown("<span style='color:grey'>Client Side</span>")
    gr.Markdown(
        "### Get the encrypted data from the Server Side"
    )

    error_box6 = gr.Textbox(label="Error ❌", visible=False)

    # Step 4.1: Data transmission
    with gr.Row():
        with gr.Column(scale=4):
            get_output_btn = gr.Button("Get data")
        with gr.Column(scale=1):
            srv_resp_retrieve_data_box = gr.Checkbox(label="Data Received", show_label=False)

    get_output_btn.click(
        get_output_fn,
        inputs=[user_id_box, out],
        outputs=[srv_resp_retrieve_data_box, error_box6],
    )

    # Step 4.1: Data transmission
    gr.Markdown("### Decrypt the output")
    decrypt_btn = gr.Button("Decrypt the output using the private secret key")
    error_box7 = gr.Textbox(label="Error ❌", visible=False)
    decrypt_box = gr.Textbox(label="Decrypted Output:")
    label = gr.Label()

    decrypt_btn.click(
        decrypt_fn,
        inputs=[user_id_box, out],
        outputs=[decrypt_box, error_box7, label],
    )

    # ------------------------- End -------------------------

demo.launch()