Alshargi commited on
Commit
1f61de5
·
verified ·
1 Parent(s): 360d3d5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +23 -26
app.py CHANGED
@@ -1,27 +1,17 @@
1
- #import streamlit as st
2
- #import skops.hub_utils as hub_utils
3
- #import pandas as pd
4
- import re
5
- from nltk.tokenize import word_tokenize
6
- import nltk
7
-
8
-
9
 
10
-
11
- import gradio as gr
12
  import pandas as pd
13
- from nltk.tokenize import word_tokenize
14
  from transformers import AutoModelForSequenceClassification
15
- import hub_utils # Assuming you have a custom module for interacting with the Hugging Face model hub
 
 
16
 
17
 
18
  nltk.download('punkt')
19
 
20
 
21
 
22
-
23
-
24
-
25
  def nextwords_1(ww, inx):
26
  try:
27
  return '' if inx == len(ww) - 1 else ww[inx + 1]
@@ -123,18 +113,17 @@ def features(sentence, index):
123
  }
124
 
125
 
126
-
127
  # Define the function for processing user input
128
  def process_text(text_input):
129
  if text_input:
130
  # Prepare text (define this function)
131
- prepared_text = prepare_text(text_input)
132
 
133
  # Tokenize text
134
- tokenized_text = word_tokenize(prepared_text)
135
 
136
  # Extract features (define this function)
137
- features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))]
138
 
139
  # Create a DataFrame with the features
140
  data = pd.DataFrame(features_list)
@@ -143,7 +132,7 @@ def process_text(text_input):
143
  model_id = "Alshargi/arabic-msa-dialects-segmentation"
144
  model = AutoModelForSequenceClassification.from_pretrained(model_id)
145
 
146
- # Get model output (define or import the get_model_output function)
147
  res = hub_utils.get_model_output(model, data)
148
 
149
  # Return the model output
@@ -151,9 +140,17 @@ def process_text(text_input):
151
  else:
152
  return "Please enter some text."
153
 
154
- # Define the Gradio interface
155
- iface = gr.Interface(fn=process_text, inputs="text", outputs="text", title="Arabic Text Segmentation")
156
-
157
- # Launch the Gradio interface
158
- iface.launch(share=True)
159
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
 
2
+ import streamlit as st
3
+ import skops.hub_utils as hub_utils
4
  import pandas as pd
 
5
  from transformers import AutoModelForSequenceClassification
6
+ import re
7
+ from nltk.tokenize import word_tokenize
8
+ import nltk
9
 
10
 
11
  nltk.download('punkt')
12
 
13
 
14
 
 
 
 
15
  def nextwords_1(ww, inx):
16
  try:
17
  return '' if inx == len(ww) - 1 else ww[inx + 1]
 
113
  }
114
 
115
 
 
116
  # Define the function for processing user input
117
  def process_text(text_input):
118
  if text_input:
119
  # Prepare text (define this function)
120
+ prepared_text = prepare_text(text_input) # Assuming prepare_text function is defined elsewhere
121
 
122
  # Tokenize text
123
+ tokenized_text = word_tokenize(prepared_text) # Assuming word_tokenize function is imported
124
 
125
  # Extract features (define this function)
126
+ features_list = [features(tokenized_text, i) for i in range(len(tokenized_text))] # Assuming features function is defined elsewhere
127
 
128
  # Create a DataFrame with the features
129
  data = pd.DataFrame(features_list)
 
132
  model_id = "Alshargi/arabic-msa-dialects-segmentation"
133
  model = AutoModelForSequenceClassification.from_pretrained(model_id)
134
 
135
+ # Get model output using hub_utils
136
  res = hub_utils.get_model_output(model, data)
137
 
138
  # Return the model output
 
140
  else:
141
  return "Please enter some text."
142
 
143
+ def main():
144
+ st.title("Model Output with Streamlit")
145
+
146
+ # Text input
147
+ input_text = st.text_input("Enter your text:")
148
+
149
+ # Process the text when a button is clicked
150
+ if st.button("Process"):
151
+ output = process_text(input_text)
152
+ st.write("Model Output:")
153
+ st.write(output)
154
+
155
+ if __name__ == "__main__":
156
+ main()