Spaces:
Running
Running
File size: 7,645 Bytes
6c6cd1e a5108b5 6c6cd1e a5108b5 6c6cd1e cc681d9 6c6cd1e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
import os
import cv2
import gradio as gr
import numpy as np
import supervision as sv
from pathlib import Path
from dds_cloudapi_sdk import Config, Client, TextPrompt
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.detection import DetectionTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget
# Constants
API_TOKEN = "361d32fa5ce22649133660c65cfcaf22"
TEXT_PROMPT = "wheel . eye . helmet . mouse . mouth . vehicle . steering wheel . ear . nose"
VID_PROMPT = "wheel . mouse . pot . acquariam . box"
TEMP_DIR = "./temp"
OUTPUT_DIR = "./outputs"
# Ensure directories exist
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
def initialize_dino_client():
"""Initialize the DINO-X client"""
config = Config(API_TOKEN)
return Client(config)
def get_class_mappings(text_prompt):
"""Create class name to ID mappings"""
classes = [x.strip().lower() for x in text_prompt.split('.') if x]
class_name_to_id = {name: id for id, name in enumerate(classes)}
return classes, class_name_to_id
def process_predictions(predictions, class_name_to_id):
"""Process DINO-X predictions into detection format"""
boxes = []
masks = []
confidences = []
class_names = []
class_ids = []
for obj in predictions:
boxes.append(obj.bbox)
if hasattr(obj, 'mask') and obj.mask:
masks.append(DetectionTask.rle2mask(
DetectionTask.string2rle(obj.mask.counts),
obj.mask.size
))
cls_name = obj.category.lower().strip()
class_names.append(cls_name)
class_ids.append(class_name_to_id[cls_name])
confidences.append(obj.score)
return {
'boxes': np.array(boxes),
'masks': np.array(masks) if masks else None,
'class_ids': np.array(class_ids),
'class_names': class_names,
'confidences': confidences
}
def process_image(image_path, prompt=TEXT_PROMPT):
"""Process a single image with DINO-X"""
try:
client = initialize_dino_client()
_, class_name_to_id = get_class_mappings(prompt)
# Upload and process image
image_url = client.upload_file(image_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=prompt)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox, DetectionTarget.Mask]
)
client.run_task(task)
# Process predictions
results = process_predictions(task.result.objects, class_name_to_id)
# Annotate image
img = cv2.imread(image_path)
detections = sv.Detections(
xyxy=results['boxes'],
mask=results['masks'].astype(bool) if results['masks'] is not None else None,
class_id=results['class_ids']
)
labels = [
f"{name} {conf:.2f}"
for name, conf in zip(results['class_names'], results['confidences'])
]
# Apply annotations
annotator = sv.BoxAnnotator()
annotated_frame = annotator.annotate(scene=img.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(
scene=annotated_frame,
detections=detections,
labels=labels
)
if results['masks'] is not None:
mask_annotator = sv.MaskAnnotator()
annotated_frame = mask_annotator.annotate(
scene=annotated_frame,
detections=detections
)
output_path = os.path.join(OUTPUT_DIR, "result.jpg")
cv2.imwrite(output_path, annotated_frame)
return output_path
except Exception as e:
return f"Error processing image: {str(e)}"
def process_video(video_path, prompt=VID_PROMPT):
"""Process a video with DINO-X"""
try:
client = initialize_dino_client()
_, class_name_to_id = get_class_mappings(prompt)
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = int(cap.get(cv2.CAP_PROP_FPS))
output_path = os.path.join(OUTPUT_DIR, "result.mp4")
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
frame_count = 0
temp_frame_path = os.path.join(TEMP_DIR, "temp_frame.jpg")
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_count += 1
if frame_count % 3 != 0: # Process every 3rd frame for speed
continue
cv2.imwrite(temp_frame_path, frame)
image_url = client.upload_file(temp_frame_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=prompt)],
bbox_threshold=0.25
)
client.run_task(task)
results = process_predictions(task.result.objects, class_name_to_id)
detections = sv.Detections(
xyxy=results['boxes'],
class_id=results['class_ids']
)
labels = [
f"{name} {conf:.2f}"
for name, conf in zip(results['class_names'], results['confidences'])
]
annotator = sv.BoxAnnotator()
annotated_frame = annotator.annotate(scene=frame.copy(), detections=detections)
label_annotator = sv.LabelAnnotator()
annotated_frame = label_annotator.annotate(
scene=annotated_frame,
detections=detections,
labels=labels
)
out.write(annotated_frame)
cap.release()
out.release()
if os.path.exists(temp_frame_path):
os.remove(temp_frame_path)
return output_path
except Exception as e:
return f"Error processing video: {str(e)}"
def process_input(input_file, prompt=TEXT_PROMPT):
"""Process either image or video input"""
if input_file is None:
return "Please provide an input file"
file_path = input_file.name
extension = os.path.splitext(file_path)[1].lower()
if extension in ['.jpg', '.jpeg', '.png']:
return process_image(file_path, prompt)
elif extension in ['.mp4', '.avi', '.mov']:
return process_video(file_path, prompt)
else:
return "Unsupported file format. Please use jpg/jpeg/png for images or mp4/avi/mov for videos."
# Create Gradio interface
demo = gr.Interface(
fn=process_input,
inputs=[
gr.File(
label="Upload Image/Video",
file_types=["image", "video"]
),
gr.Textbox(
label="Detection Prompt",
value=TEXT_PROMPT,
lines=2
)
],
outputs=gr.Image(label="Detection Result"),
title="DINO-X Object Detection",
description="Upload an image or video to detect objects using DINO-X. You can modify the detection prompt to specify what objects to look for.",
examples=[
["assets/demo.png", TEXT_PROMPT],
["assets/demo.mp4", VID_PROMPT]
],
cache_examples=True
)
if __name__ == "__main__":
demo.launch() |