File size: 7,645 Bytes
6c6cd1e
 
 
 
 
 
 
 
 
 
 
 
 
 
a5108b5
6c6cd1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5108b5
6c6cd1e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cc681d9
6c6cd1e
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
import cv2
import gradio as gr
import numpy as np
import supervision as sv
from pathlib import Path
from dds_cloudapi_sdk import Config, Client, TextPrompt
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk.tasks.detection import DetectionTask
from dds_cloudapi_sdk.tasks.types import DetectionTarget

# Constants
API_TOKEN = "361d32fa5ce22649133660c65cfcaf22"
TEXT_PROMPT = "wheel . eye . helmet . mouse . mouth . vehicle . steering wheel . ear . nose"
VID_PROMPT = "wheel . mouse . pot . acquariam . box"
TEMP_DIR = "./temp"
OUTPUT_DIR = "./outputs"

# Ensure directories exist
os.makedirs(TEMP_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)

def initialize_dino_client():
    """Initialize the DINO-X client"""
    config = Config(API_TOKEN)
    return Client(config)

def get_class_mappings(text_prompt):
    """Create class name to ID mappings"""
    classes = [x.strip().lower() for x in text_prompt.split('.') if x]
    class_name_to_id = {name: id for id, name in enumerate(classes)}
    return classes, class_name_to_id

def process_predictions(predictions, class_name_to_id):
    """Process DINO-X predictions into detection format"""
    boxes = []
    masks = []
    confidences = []
    class_names = []
    class_ids = []
    
    for obj in predictions:
        boxes.append(obj.bbox)
        if hasattr(obj, 'mask') and obj.mask:
            masks.append(DetectionTask.rle2mask(
                DetectionTask.string2rle(obj.mask.counts), 
                obj.mask.size
            ))
        cls_name = obj.category.lower().strip()
        class_names.append(cls_name)
        class_ids.append(class_name_to_id[cls_name])
        confidences.append(obj.score)
    
    return {
        'boxes': np.array(boxes),
        'masks': np.array(masks) if masks else None,
        'class_ids': np.array(class_ids),
        'class_names': class_names,
        'confidences': confidences
    }

def process_image(image_path, prompt=TEXT_PROMPT):
    """Process a single image with DINO-X"""
    try:
        client = initialize_dino_client()
        _, class_name_to_id = get_class_mappings(prompt)
        
        # Upload and process image
        image_url = client.upload_file(image_path)
        task = DinoxTask(
            image_url=image_url,
            prompts=[TextPrompt(text=prompt)],
            bbox_threshold=0.25,
            targets=[DetectionTarget.BBox, DetectionTarget.Mask]
        )
        client.run_task(task)
        
        # Process predictions
        results = process_predictions(task.result.objects, class_name_to_id)
        
        # Annotate image
        img = cv2.imread(image_path)
        detections = sv.Detections(
            xyxy=results['boxes'],
            mask=results['masks'].astype(bool) if results['masks'] is not None else None,
            class_id=results['class_ids']
        )
        
        labels = [
            f"{name} {conf:.2f}"
            for name, conf in zip(results['class_names'], results['confidences'])
        ]
        
        # Apply annotations
        annotator = sv.BoxAnnotator()
        annotated_frame = annotator.annotate(scene=img.copy(), detections=detections)
        
        label_annotator = sv.LabelAnnotator()
        annotated_frame = label_annotator.annotate(
            scene=annotated_frame, 
            detections=detections, 
            labels=labels
        )
        
        if results['masks'] is not None:
            mask_annotator = sv.MaskAnnotator()
            annotated_frame = mask_annotator.annotate(
                scene=annotated_frame, 
                detections=detections
            )
        
        output_path = os.path.join(OUTPUT_DIR, "result.jpg")
        cv2.imwrite(output_path, annotated_frame)
        
        return output_path
        
    except Exception as e:
        return f"Error processing image: {str(e)}"

def process_video(video_path, prompt=VID_PROMPT):
    """Process a video with DINO-X"""
    try:
        client = initialize_dino_client()
        _, class_name_to_id = get_class_mappings(prompt)
        
        cap = cv2.VideoCapture(video_path)
        width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
        height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
        fps = int(cap.get(cv2.CAP_PROP_FPS))
        
        output_path = os.path.join(OUTPUT_DIR, "result.mp4")
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
        
        frame_count = 0
        temp_frame_path = os.path.join(TEMP_DIR, "temp_frame.jpg")
        
        while cap.isOpened():
            ret, frame = cap.read()
            if not ret:
                break
                
            frame_count += 1
            if frame_count % 3 != 0:  # Process every 3rd frame for speed
                continue
                
            cv2.imwrite(temp_frame_path, frame)
            image_url = client.upload_file(temp_frame_path)
            
            task = DinoxTask(
                image_url=image_url,
                prompts=[TextPrompt(text=prompt)],
                bbox_threshold=0.25
            )
            client.run_task(task)
            
            results = process_predictions(task.result.objects, class_name_to_id)
            
            detections = sv.Detections(
                xyxy=results['boxes'],
                class_id=results['class_ids']
            )
            
            labels = [
                f"{name} {conf:.2f}"
                for name, conf in zip(results['class_names'], results['confidences'])
            ]
            
            annotator = sv.BoxAnnotator()
            annotated_frame = annotator.annotate(scene=frame.copy(), detections=detections)
            
            label_annotator = sv.LabelAnnotator()
            annotated_frame = label_annotator.annotate(
                scene=annotated_frame,
                detections=detections,
                labels=labels
            )
            
            out.write(annotated_frame)
        
        cap.release()
        out.release()
        
        if os.path.exists(temp_frame_path):
            os.remove(temp_frame_path)
            
        return output_path
        
    except Exception as e:
        return f"Error processing video: {str(e)}"

def process_input(input_file, prompt=TEXT_PROMPT):
    """Process either image or video input"""
    if input_file is None:
        return "Please provide an input file"
        
    file_path = input_file.name
    extension = os.path.splitext(file_path)[1].lower()
    
    if extension in ['.jpg', '.jpeg', '.png']:
        return process_image(file_path, prompt)
    elif extension in ['.mp4', '.avi', '.mov']:
        return process_video(file_path, prompt)
    else:
        return "Unsupported file format. Please use jpg/jpeg/png for images or mp4/avi/mov for videos."

# Create Gradio interface
demo = gr.Interface(
    fn=process_input,
    inputs=[
        gr.File(
            label="Upload Image/Video",
            file_types=["image", "video"]
        ),
        gr.Textbox(
            label="Detection Prompt",
            value=TEXT_PROMPT,
            lines=2
        )
    ],
    outputs=gr.Image(label="Detection Result"),
    title="DINO-X Object Detection",
    description="Upload an image or video to detect objects using DINO-X. You can modify the detection prompt to specify what objects to look for.",
    examples=[
        ["assets/demo.png", TEXT_PROMPT],
        ["assets/demo.mp4", VID_PROMPT]
    ],
    cache_examples=True
)

if __name__ == "__main__":
    demo.launch()