Spaces:
Build error
Build error
import os | |
import json | |
import time | |
import logging | |
from pathlib import Path | |
from typing import List, Dict, Optional | |
from dataclasses import dataclass | |
from fastapi.encoders import jsonable_encoder | |
import fitz # PyMuPDF | |
from sentence_transformers import SentenceTransformer | |
from mlc_llm import MLCEngine | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class ProductSpec: | |
name: str | |
description: Optional[str] = None | |
price: Optional[float] = None | |
attributes: Dict[str, str] = None | |
tables: List[Dict] = None | |
def to_dict(self): | |
return jsonable_encoder(self) | |
class PDFProcessor: | |
def __init__(self): | |
self.emb_model = self._initialize_emb_model("all-MiniLM-L6-v2") | |
self.llm = self._initialize_llm() | |
self.output_dir = Path("./output") | |
self.output_dir.mkdir(exist_ok=True) | |
def _initialize_emb_model(self, model_name): | |
try: | |
return SentenceTransformer(f'sentence-transformers/{model_name}') | |
except Exception as e: | |
logger.warning(f"SentenceTransformer failed: {e}") | |
from transformers import AutoTokenizer, AutoModel | |
tokenizer = AutoTokenizer.from_pretrained(f"sentence-transformers/{model_name}") | |
model = AutoModel.from_pretrained(f"sentence-transformers/{model_name}") | |
return model | |
def _initialize_llm(self): | |
"""Initialize MLC LLM engine with optimized settings""" | |
try: | |
# return MLCEngine(model="HF://mlc-ai/Llama-3-8B-Instruct-q4f16_1-MLC") | |
return MLCEngine(model="HF://mlc-ai/Llama-2-7B-q4f16_1-MLC") | |
except Exception as e: | |
logger.error(f"Failed to initialize MLC Engine: {e}") | |
raise | |
def process_pdf(self, pdf_path: str) -> Dict: | |
"""Main PDF processing pipeline""" | |
start_time = time.time() | |
try: | |
doc = fitz.open(pdf_path) | |
except Exception as e: | |
logger.error(f"Failed to open PDF: {e}") | |
raise RuntimeError("Cannot open PDF file.") from e | |
text_blocks = [] | |
tables = [] | |
for page_num, page in enumerate(doc): | |
blocks = self._extract_text_blocks(page) | |
text_blocks.extend([b for b in blocks if len(b.strip()) >= 10]) | |
tables.extend(self._extract_tables(page, page_num)) | |
products = [] | |
for idx, block in enumerate(text_blocks): | |
product = self._process_text_block(block) | |
if product and self._is_valid_product(product): | |
product.tables = tables | |
products.append(product.to_dict()) | |
logger.info(f"Processed {len(products)} products in {time.time() - start_time:.2f}s") | |
return {"products": products, "tables": tables} | |
def _process_text_block(self, text: str) -> Optional[ProductSpec]: | |
"""Process text with MLC LLM using optimized prompt""" | |
try: | |
prompt = self._generate_query_prompt(text) | |
response = self.llm.chat.completions.create( | |
messages=[{"role": "user", "content": prompt}], | |
stream=False | |
) | |
return self._parse_response(response.choices[0].message.content) | |
except Exception as e: | |
logger.warning(f"Error processing text block: {e}") | |
return None | |
def _generate_query_prompt(self, text: str) -> str: | |
"""Generate structured prompt for better JSON response""" | |
return f"""Extract product specifications as JSON from this text: | |
Text: {text} | |
Return valid JSON with exactly these keys: | |
- name (string) | |
- description (string, optional) | |
- price (number, optional) | |
- attributes (object with key-value pairs, optional) | |
Example: | |
{{ | |
"name": "Example Product", | |
"description": "High-quality example item", | |
"price": 99.99, | |
"attributes": {{"color": "red", "size": "XL"}} | |
}}""" | |
def _is_valid_product(self, product: ProductSpec) -> bool: | |
"""Validate extracted product data""" | |
return any([ | |
product.name, | |
product.description, | |
product.price, | |
product.attributes | |
]) | |
def _extract_text_blocks(self, page) -> List[str]: | |
"""Extract text blocks from a PDF page using PyMuPDF's blocks method.""" | |
blocks = [] | |
for block in page.get_text("blocks"): | |
# block[4] contains the text content | |
text = block[4].strip() | |
if text: | |
blocks.append(text) | |
return blocks | |
def _extract_tables(self, page, page_num: int) -> List[Dict]: | |
"""Extract tables from a PDF page using PyMuPDF's table extraction (if available).""" | |
tables = [] | |
try: | |
tab = page.find_tables() | |
if tab and hasattr(tab, 'tables') and tab.tables: | |
for table in tab.tables: | |
table_data = table.extract() | |
if table_data: | |
tables.append({ | |
"page": page_num + 1, | |
"cells": table_data, | |
"header": table.header.names if table.header else [], | |
"content": table_data | |
}) | |
except Exception as e: | |
logger.warning(f"Error extracting tables from page {page_num + 1}: {e}") | |
return tables | |
def _parse_response(self, response: str) -> Optional[ProductSpec]: | |
"""Parse the LLM's response to extract a product specification.""" | |
try: | |
json_start = response.find('{') | |
json_end = response.rfind('}') + 1 | |
json_str = response[json_start:json_end].strip() | |
if not json_str: | |
raise ValueError("No JSON content found in response.") | |
data = json.loads(json_str) | |
# If the returned JSON is essentially empty, return None | |
if all(not data.get(key) for key in ['name', 'description', 'price', 'attributes']): | |
return None | |
return ProductSpec( | |
name=data.get('name', ''), | |
description=data.get('description'), | |
price=data.get('price'), | |
attributes=data.get('attributes', {}) | |
) | |
except (json.JSONDecodeError, KeyError, ValueError) as e: | |
logger.warning(f"Parse error: {e} in response: {response}") | |
return None | |
def process_pdf_catalog(pdf_path: str): | |
processor = PDFProcessor() | |
try: | |
result = processor.process_pdf(pdf_path) | |
return result, "Processing completed successfully!" | |
except Exception as e: | |
logger.error(f"Processing failed: {e}") | |
return {}, "Error processing PDF" | |
if __name__ == "__main__": | |
pdf_path = "path/to/your/pdf_file.pdf" | |
result, message = process_pdf_catalog(pdf_path) | |
print(json.dumps(result, indent=2), message) | |