File size: 87,178 Bytes
9172632
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
import numpy as np
import pandas as pd
import yfinance as yf
import streamlit as st
import plotly.express as px
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
from datetime import datetime, timedelta
import time
from scipy.stats import linregress
import requests
from scipy import signal
import ta
from ta.trend import MACD, SMAIndicator, EMAIndicator
from ta.momentum import RSIIndicator, StochasticOscillator
from ta.volatility import BollingerBands, AverageTrueRange
from ta.volume import OnBalanceVolumeIndicator, MFIIndicator

class DendriticNode:
    """

    Represents a single node in the dendritic network.

    Each node can have parent and child dendrites, forming a hierarchical structure.

    """
    def __init__(self, level=0, feature_index=None, threshold=0.5, parent=None, name=None, growth_factor=1.0):
        self.level = level  # Depth in the hierarchy
        self.feature_index = feature_index  # Which feature this node tracks
        self.threshold = threshold  # Activation threshold
        self.parent = parent  # Parent node
        self.children = []  # Child nodes
        self.strength = 0.5  # Connection strength
        self.activation_history = []  # Recent activation levels
        self.prediction_vector = None  # Pattern that often follows this node's activation
        self.name = name  # Optional human-readable name for this dendrite
        self.growth_factor = growth_factor  # How readily this dendrite grows new connections
        self.learning_rate = 0.01  # Adjustable learning rate
        self.prediction_confidence = 0.5  # Confidence in predictions (0-1)
        self.last_activations = []  # Store last few activations for pattern recognition
        self.pattern_memory = {}  # Dictionary to store recognized patterns
        
    def activate(self, input_vector, learning_rate=0.01):
        """Activate the node based on input and propagate to children"""
        # Calculate activation based on feature if available
        if self.feature_index is not None and self.feature_index < len(input_vector):
            activation = input_vector[self.feature_index]
        else:
            # For higher-level nodes, activation is a weighted aggregate of children
            if not self.children:
                activation = 0.5  # Default activation
            else:
                # Prioritize stronger child dendrites for activation
                child_activations = []
                child_weights = []
                for child in self.children:
                    child_act = child.activate(input_vector)
                    child_activations.append(child_act)
                    child_weights.append(child.strength)
                
                # If all weights are zero, use uniform weighting
                total_weight = sum(child_weights)
                if total_weight == 0:
                    activation = np.mean(child_activations) if child_activations else 0.5
                else:
                    # Calculate weighted average
                    activation = sum(a * w for a, w in zip(child_activations, child_weights)) / total_weight
        
        # Update strength based on activation
        if activation > self.threshold:
            # Strong activation increases strength more when close to threshold
            strength_boost = learning_rate * (1 + 0.5 * (1 - abs(activation - self.threshold)))
            self.strength += strength_boost
        else:
            # Decay is slower for specialized dendrites to maintain stability
            decay_rate = learning_rate * 0.1 * (1.0 if self.name is None else 0.5)
            self.strength -= decay_rate
        
        # Ensure strength remains bounded
        self.strength = np.clip(self.strength, 0.1, 1.0)
        
        # Store activation in history
        self.activation_history.append(activation)
        if len(self.activation_history) > 100:  # Keep last 100 activations
            self.activation_history.pop(0)
            
        # Store recent activations for pattern recognition
        self.last_activations.append(activation)
        if len(self.last_activations) > 5:  # Track last 5 activations
            self.last_activations.pop(0)
            
            # Check if we have a recognizable pattern
            if len(self.last_activations) >= 3:
                # Simplify the pattern to a signature (e.g., up-down-up)
                pattern_sig = ''.join(['U' if self.last_activations[i] > self.last_activations[i-1] 
                                     else 'D' for i in range(1, len(self.last_activations))])
                
                # Store this pattern's occurrence
                if pattern_sig in self.pattern_memory:
                    self.pattern_memory[pattern_sig] += 1
                else:
                    self.pattern_memory[pattern_sig] = 1
        
        return activation * self.strength
    
    def update_prediction(self, future_vector, learning_rate=0.01):
        """Update prediction vector based on what follows this node's activation"""
        if not self.activation_history:
            return  # No activations yet
            
        # Only update prediction if recent activation was significant
        recent_activation = self.activation_history[-1] if self.activation_history else 0
        if recent_activation * self.strength < 0.3:
            return  # Not active enough to learn from
        
        if self.prediction_vector is None:
            self.prediction_vector = future_vector.copy()
            self.prediction_confidence = 0.5  # Initial confidence
        else:
            # Adjust learning rate based on activation strength
            effective_rate = learning_rate * min(1.0, recent_activation * 2)
            
            # Calculate prediction error
            if hasattr(future_vector, '__len__') and hasattr(self.prediction_vector, '__len__'):
                error = np.sqrt(np.mean((np.array(future_vector) - np.array(self.prediction_vector))**2))
                
                # Adjust confidence based on error (lower error = higher confidence)
                confidence_change = 0.1 * (1.0 - min(error * 2, 1.0))
                self.prediction_confidence = np.clip(
                    self.prediction_confidence + confidence_change, 0.1, 0.9)
            
            # Update prediction with weighted blend
            self.prediction_vector = (1 - effective_rate) * self.prediction_vector + effective_rate * future_vector
    
    def predict(self):
        """Generate prediction based on current activation pattern"""
        if self.prediction_vector is None:
            return None
        
        # Scale by strength and confidence
        prediction = self.prediction_vector * self.strength * self.prediction_confidence
        
        # If we have recognized patterns, boost prediction based on pattern history
        if self.last_activations and len(self.last_activations) >= 3:
            pattern_sig = ''.join(['U' if self.last_activations[i] > self.last_activations[i-1] 
                                 else 'D' for i in range(1, len(self.last_activations))])
            
            if pattern_sig in self.pattern_memory:
                # Boost based on how often we've seen this pattern (normalized)
                pattern_count = self.pattern_memory[pattern_sig]
                total_patterns = sum(self.pattern_memory.values())
                pattern_confidence = min(0.2, pattern_count / (total_patterns + 1))
                
                # If last part of pattern is "U", boost upward prediction
                if pattern_sig.endswith('U'):
                    for i in range(len(prediction)):
                        prediction[i] = min(1.0, prediction[i] + pattern_confidence)
                # If last part of pattern is "D", boost downward prediction
                elif pattern_sig.endswith('D'):
                    for i in range(len(prediction)):
                        prediction[i] = max(0.0, prediction[i] - pattern_confidence)
        
        return prediction
    
    def grow_dendrite(self, feature_index=None, threshold=None, name=None, growth_factor=None):
        """Grow a new child dendrite"""
        if threshold is None:
            threshold = self.threshold + np.random.uniform(-0.1, 0.1)  # Slightly different threshold
        
        if growth_factor is None:
            growth_factor = self.growth_factor
        
        # Create new child with reference to parent
        child = DendriticNode(
            level=self.level + 1,
            feature_index=feature_index,
            threshold=threshold,
            parent=self,
            name=name,
            growth_factor=growth_factor
        )
        self.children.append(child)
        return child
    
    def prune_weak_dendrites(self, min_strength=0.2):
        """Remove weak dendrites that haven't been useful"""
        # Don't prune named dendrites (preserve specialized ones)
        self.children = [child for child in self.children 
                        if child.strength > min_strength or child.name is not None]
        
        # Recursively prune children
        for child in self.children:
            child.prune_weak_dendrites(min_strength)

class HierarchicalDendriticNetwork:
    """

    Implements a hierarchical network of dendrites for stock prediction.

    The network self-organizes based on patterns in the input data.

    """
    def __init__(self, input_dim, max_levels=3, initial_dendrites_per_level=5):
        self.input_dim = input_dim  # Number of input features
        self.max_levels = max_levels  # Maximum depth of hierarchy
        
        # Root node (soma)
        self.root = DendriticNode(level=0, name="root")
        
        # Initialize basic structure
        self._initialize_dendrites(initial_dendrites_per_level)
        
        # Scaling for inputs
        self.scaler = MinMaxScaler(feature_range=(0, 1))
        
        # Memory for temporal patterns
        self.memory_window = 15  # Days to remember (increased from 10)
        self.memory_buffer = []  # Store recent data
        
        # Fractal dimension estimate
        self.fractal_dim = 1.0
        
        # Performance tracking
        self.prediction_accuracy = []
        self.predicted_directions = []
        self.actual_directions = []
        
        # Feature importance tracking
        self.feature_importance = np.ones(input_dim) / input_dim
        
        # Market regime detection
        self.current_regime = "unknown"  # "bullish", "bearish", "sideways", "volatile"
        self.regime_history = []
        
        # Adaptive threshold based on market volatility
        self.confidence_threshold = 0.55  # Starting threshold
        self.volatility_history = []
        
        # Cross-asset correlations (will be populated during training)
        self.asset_correlations = {}
    
    def _initialize_dendrites(self, dendrites_per_level):
        """Create initial dendrite structure with specialized dendrites for stock patterns"""
        # Price level dendrites
        self.root.grow_dendrite(feature_index=0, threshold=0.3, name="price_low", growth_factor=1.2)
        self.root.grow_dendrite(feature_index=0, threshold=0.5, name="price_mid", growth_factor=1.0)
        self.root.grow_dendrite(feature_index=0, threshold=0.7, name="price_high", growth_factor=1.2)
        
        # Price trend dendrites
        self.root.grow_dendrite(feature_index=1, threshold=0.3, name="downtrend", growth_factor=1.2)
        self.root.grow_dendrite(feature_index=1, threshold=0.5, name="neutral_trend", growth_factor=0.8)
        self.root.grow_dendrite(feature_index=1, threshold=0.7, name="uptrend", growth_factor=1.2)
        
        # Volatility dendrites
        self.root.grow_dendrite(feature_index=2, threshold=0.3, name="low_volatility", growth_factor=0.8)
        self.root.grow_dendrite(feature_index=2, threshold=0.7, name="high_volatility", growth_factor=1.2)
        
        # Volume dendrites
        self.root.grow_dendrite(feature_index=3, threshold=0.3, name="low_volume", growth_factor=0.7)
        self.root.grow_dendrite(feature_index=3, threshold=0.7, name="high_volume", growth_factor=1.3)
        
        # Momentum dendrites
        self.root.grow_dendrite(feature_index=4, threshold=0.3, name="negative_momentum", growth_factor=1.2)
        self.root.grow_dendrite(feature_index=4, threshold=0.7, name="positive_momentum", growth_factor=1.2)
        
        # RSI dendrites
        self.root.grow_dendrite(feature_index=7, threshold=0.3, name="oversold", growth_factor=1.3)
        self.root.grow_dendrite(feature_index=7, threshold=0.7, name="overbought", growth_factor=1.3)
        
        # MACD dendrites
        self.root.grow_dendrite(feature_index=5, threshold=0.3, name="bearish_macd", growth_factor=1.1)
        self.root.grow_dendrite(feature_index=5, threshold=0.7, name="bullish_macd", growth_factor=1.1)
        
        # Bollinger Band dendrites
        self.root.grow_dendrite(feature_index=6, threshold=0.2, name="below_lower_band", growth_factor=1.3)
        self.root.grow_dendrite(feature_index=6, threshold=0.8, name="above_upper_band", growth_factor=1.3)
        
        # Currency-related dendrites
        if self.input_dim > 15:  # If we have currency features
            self.root.grow_dendrite(feature_index=15, threshold=0.3, name="dollar_weak", growth_factor=1.1)
            self.root.grow_dendrite(feature_index=15, threshold=0.7, name="dollar_strong", growth_factor=1.1)
        
        # Level 2: Create pattern detector dendrites
        # Create dendrites that specifically look for common patterns
        
        # Find dendrites by name
        uptrend = None
        downtrend = None
        high_volume = None
        low_volatility = None
        oversold = None
        overbought = None
        
        for child in self.root.children:
            if child.name == "uptrend":
                uptrend = child
            elif child.name == "downtrend":
                downtrend = child
            elif child.name == "high_volume":
                high_volume = child
            elif child.name == "low_volatility":
                low_volatility = child
            elif child.name == "oversold":
                oversold = child
            elif child.name == "overbought":
                overbought = child
        
        # Pattern 1: Uptrend with increasing volume (bullish)
        if uptrend and high_volume:
            pattern1 = uptrend.grow_dendrite(threshold=0.6, name="uptrend_with_volume", growth_factor=1.5)
            for _ in range(2):
                pattern1.grow_dendrite(threshold=0.6)
        
        # Pattern 2: Downtrend with high volatility (bearish)
        if downtrend:
            pattern2 = downtrend.grow_dendrite(threshold=0.4, name="downtrend_continuation", growth_factor=1.5)
            for _ in range(2):
                pattern2.grow_dendrite(threshold=0.4)
        
        # Pattern 3: Low volatility with positive momentum (potential breakout)
        if low_volatility:
            pattern3 = low_volatility.grow_dendrite(threshold=0.6, name="volatility_compression", growth_factor=1.5)
            for _ in range(2):
                pattern3.grow_dendrite(threshold=0.6)
        
        # Pattern 4: Oversold with volume spike (potential reversal)
        if oversold and high_volume:
            pattern4 = oversold.grow_dendrite(threshold=0.7, name="oversold_reversal", growth_factor=1.5)
            for _ in range(2):
                pattern4.grow_dendrite(threshold=0.7)
        
        # Pattern 5: Overbought with volume decline (potential top)
        if overbought:
            pattern5 = overbought.grow_dendrite(threshold=0.3, name="overbought_reversal", growth_factor=1.5)
            for _ in range(2):
                pattern5.grow_dendrite(threshold=0.3)
        
        # Add some general dendrites for other patterns
        for dendrite in self.root.children:
            for _ in range(dendrites_per_level // 5):
                dendrite.grow_dendrite()
        
        # Level 3: Higher-level pattern integration
        if self.max_levels >= 3:
            # Create specialized market regime dendrites
            bullish_regime = self.root.grow_dendrite(name="bullish_regime", threshold=0.7, growth_factor=1.2)
            bearish_regime = self.root.grow_dendrite(name="bearish_regime", threshold=0.3, growth_factor=1.2)
            sideways_regime = self.root.grow_dendrite(name="sideways_regime", threshold=0.5, growth_factor=1.0)
            
            # Add children to these regime detectors
            for _ in range(dendrites_per_level // 3):
                bullish_regime.grow_dendrite(threshold=np.random.uniform(0.6, 0.8))
                bearish_regime.grow_dendrite(threshold=np.random.uniform(0.2, 0.4))
                sideways_regime.grow_dendrite(threshold=np.random.uniform(0.4, 0.6))
    
    def preprocess_data(self, data):
        """Preprocess stock data for the dendritic network"""
        # Extract relevant features
        features = self._extract_features(data)
        
        # Scale features to [0, 1]
        if features.shape[0] > 0:  # Check if we have any data
            scaled_features = self.scaler.fit_transform(features)
            return scaled_features
        return np.array([])
    
    def _extract_features(self, data):
        """Extract features from stock data with enhanced technical indicators"""
        if data.empty:
            return np.array([])
        
        # Create a copy of the dataframe to avoid modifying the original
        df = data.copy()
        
        # Basic features
        features = []
        
        # 1. Price features - normalized closing price
        close = df['Close'].values
        price = (close - np.mean(close)) / (np.std(close) + 1e-8)
        features.append(price)
        
        # 2. Returns (daily percent change)
        returns = df['Close'].pct_change().fillna(0).values
        features.append(returns)
        
        # 3. Volatility (rolling std of returns)
        volatility = df['Close'].pct_change().rolling(window=5).std().fillna(0).values
        features.append(volatility)
        
        # 4. Volume relative to average
        rel_volume = df['Volume'] / df['Volume'].rolling(window=20).mean().fillna(1)
        rel_volume = rel_volume.fillna(1).values
        features.append(rel_volume)
        
        # 5. Price momentum (rate of change over 5 days)
        momentum = df['Close'].pct_change(periods=5).fillna(0).values
        features.append(momentum)
        
        # 6. MACD Line
        macd = MACD(close=df['Close']).macd()
        macd = (macd - np.mean(macd)) / (np.std(macd) + 1e-8)
        features.append(macd.fillna(0).values)
        
        # 7. Bollinger Bands Position
        bb = BollingerBands(close=df['Close'], window=20, window_dev=2)
        bb_pos = (df['Close'] - bb.bollinger_lband()) / (bb.bollinger_hband() - bb.bollinger_lband() + 1e-8)
        features.append(bb_pos.fillna(0.5).values)
        
        # 8. RSI
        rsi = RSIIndicator(close=df['Close'], window=14).rsi() / 100.0
        features.append(rsi.fillna(0.5).values)
        
        # 9. Stochastic Oscillator
        stoch = StochasticOscillator(high=df['High'], low=df['Low'], close=df['Close']).stoch() / 100.0
        features.append(stoch.fillna(0.5).values)
        
        # 10. Average True Range (normalized)
        atr = AverageTrueRange(high=df['High'], low=df['Low'], close=df['Close']).average_true_range()
        atr = (atr - np.min(atr)) / (np.max(atr) - np.min(atr) + 1e-8)
        features.append(atr.fillna(0.2).values)
        
        # 11. On Balance Volume (normalized)
        obv = OnBalanceVolumeIndicator(close=df['Close'], volume=df['Volume']).on_balance_volume()
        obv = (obv - np.mean(obv)) / (np.std(obv) + 1e-8)
        features.append(obv.fillna(0).values)
        
        # 12. Money Flow Index
        mfi = MFIIndicator(high=df['High'], low=df['Low'], close=df['Close'], 
                          volume=df['Volume'], window=14).money_flow_index() / 100.0
        features.append(mfi.fillna(0.5).values)
        
        # 13. Price Distance from 50-day SMA (normalized)
        sma50 = SMAIndicator(close=df['Close'], window=50).sma_indicator()
        sma_dist = (df['Close'] - sma50) / (df['Close'] + 1e-8)
        features.append(sma_dist.fillna(0).values)
        
        # 14. EMA Crossover Signal (fast vs slow EMAs)
        ema12 = EMAIndicator(close=df['Close'], window=12).ema_indicator()
        ema26 = EMAIndicator(close=df['Close'], window=26).ema_indicator()
        ema_cross = (ema12 - ema26) / (df['Close'] + 1e-8)
        features.append(ema_cross.fillna(0).values)
        
        # 15. Fibonacci Retracement Levels (dynamic)
        # Find recent high and low in a rolling window
        window = 20
        df['RollingHigh'] = df['High'].rolling(window=window).max()
        df['RollingLow'] = df['Low'].rolling(window=window).min()
        
        # Calculate where current price is in the retracement levels
        range_size = df['RollingHigh'] - df['RollingLow']
        fib_pos = (df['Close'] - df['RollingLow']) / (range_size + 1e-8)
        features.append(fib_pos.fillna(0.5).values)
        
        # Include any currency-related features if present
        for col in df.columns:
            if col.startswith('Currency_'):
                # Normalize currency data
                curr_data = df[col].values
                if len(curr_data) > 0:
                    curr_norm = (curr_data - np.mean(curr_data)) / (np.std(curr_data) + 1e-8)
                    features.append(curr_norm)
        
        # Transpose to get features as columns
        return np.transpose(np.array(features))
    
    def add_currency_data(self, data, currency_data):
        """Add currency exchange rate data to feature set"""
        if data.empty or currency_data.empty:
            return data
        
        # Resample currency data to match stock data frequency
        currency_data = currency_data.reindex(data.index, method='ffill')
        
        # Add currency columns to stock data
        for col in currency_data.columns:
            data[f'Currency_{col}'] = currency_data[col]
        
        return data
    
    def add_sector_data(self, data, sector_ticker, period="1y"):
        """Add sector ETF data for correlation analysis"""
        try:
            # Fetch sector data
            sector_data = yf.Ticker(sector_ticker).history(period=period)
            if sector_data.empty:
                return data
            
            # Align with stock data dates
            sector_data = sector_data.reindex(data.index, method='ffill')
            
            # Calculate daily returns
            sector_returns = sector_data['Close'].pct_change().fillna(0)
            
            # Add to stock data
            data[f'Sector_{sector_ticker}'] = sector_returns
            
            return data
        except Exception as e:
            st.error(f"Error fetching sector data: {e}")
            return data
    
    def detect_market_regime(self, data, lookback=20):
        """Detect current market regime based on price action and volatility"""
        if len(data) < lookback:
            return "unknown"
        
        # Get recent data
        recent = data.iloc[-lookback:]
        
        # Calculate trend strength
        returns = recent['Close'].pct_change().dropna()
        trend = np.sum(returns) / (np.std(returns) + 1e-8)
        
        # Calculate volatility
        volatility = np.std(returns) * np.sqrt(252)  # Annualized
        
        # Store volatility for adaptive thresholds
        self.volatility_history.append(volatility)
        if len(self.volatility_history) > 10:
            self.volatility_history.pop(0)
        
        # Update confidence threshold based on recent volatility
        if len(self.volatility_history) > 1:
            avg_vol = np.mean(self.volatility_history)
            # Higher volatility = higher threshold (require more confidence)
            self.confidence_threshold = 0.5 + min(0.2, avg_vol)
        
        # Determine regime
        if abs(trend) < 0.5:  # Low trend strength
            if volatility > 0.2:  # But high volatility
                regime = "volatile"
            else:
                regime = "sideways"
        elif trend > 0.5:  # Strong uptrend
            regime = "bullish"
        else:  # Strong downtrend
            regime = "bearish"
        
        self.current_regime = regime
        self.regime_history.append(regime)
        
        return regime
    
    def estimate_fractal_dimension(self):
        """

        Estimate the fractal dimension of the dendrite activation patterns

        using a box counting method simulation

        """
        # Create a simulated activation grid from dendrite strengths
        grid_size = 32
        activation_grid = np.zeros((grid_size, grid_size))
        
        def add_node_to_grid(node, x=0, y=0, spread=grid_size/2):
            # Add fuzzy activation for more complex boundaries
            strength = node.strength
            x_int, y_int = int(x), int(y)
            
            # Create a small activation cloud around the dendrite
            for dx in range(-1, 2):
                for dy in range(-1, 2):
                    nx, ny = (x_int + dx) % grid_size, (y_int + dy) % grid_size
                    # Stronger activation at center, weaker at edges
                    dist = np.sqrt(dx**2 + dy**2)
                    activation_grid[nx, ny] = max(
                        activation_grid[nx, ny],
                        strength * max(0, 1 - dist/2)
                    )
            
            # Add children in a circular pattern with some randomization
            if node.children:
                angle_step = 2 * np.pi / len(node.children)
                for i, child in enumerate(node.children):
                    angle = i * angle_step + np.random.uniform(-0.2, 0.2)
                    new_spread = max(1, spread * (0.6 + 0.1 * np.random.random()))
                    new_x = x + np.cos(angle) * new_spread
                    new_y = y + np.sin(angle) * new_spread
                    add_node_to_grid(child, new_x, new_y, new_spread)
        
        # Start from center of grid
        add_node_to_grid(self.root, grid_size//2, grid_size//2)
        
        # Apply Gaussian blur to create more natural boundaries
        from scipy.ndimage import gaussian_filter
        activation_grid = gaussian_filter(activation_grid, sigma=0.5)
        
        # Create more defined boundaries using edge detection
        edges = np.zeros_like(activation_grid)
        threshold = 0.2
        for i in range(1, grid_size-1):
            for j in range(1, grid_size-1):
                if activation_grid[i, j] > threshold:
                    # Check if there's a significant gradient in any direction
                    neighbors = [
                        activation_grid[i-1, j], activation_grid[i+1, j],
                        activation_grid[i, j-1], activation_grid[i, j+1]
                    ]
                    if max(neighbors) - min(neighbors) > 0.15:
                        edges[i, j] = 0.5  # Mark as boundary
        
        # Combine the activation with boundary emphasis
        combined_grid = activation_grid.copy()
        combined_grid[edges > 0] += 0.3  # Enhance boundaries
        combined_grid = np.clip(combined_grid, 0, 1)
        
        # Apply box counting method to estimate fractal dimension
        box_sizes = [1, 2, 4, 8, 16]
        counts = []
        
        for size in box_sizes:
            count = 0
            # Count boxes of size 'size' needed to cover the pattern
            for i in range(0, grid_size, size):
                for j in range(0, grid_size, size):
                    if np.any(combined_grid[i:i+size, j:j+size] > 0.25):
                        count += 1
            counts.append(count)
        
        # Calculate dimension from log-log plot slope
        if all(c > 0 for c in counts):
            coeffs = np.polyfit(np.log(box_sizes), np.log(counts), 1)
            self.fractal_dim = -coeffs[0]  # Negative slope gives dimension
        
        return self.fractal_dim, combined_grid
    
    def find_pattern_correlations(self, input_data_buffer):
        """Find patterns of feature correlations in the input data"""
        if not input_data_buffer or len(input_data_buffer) < 5:
            return {}
        
        # Stack data from buffer
        data_matrix = np.vstack(input_data_buffer)
        
        # Calculate correlation matrix
        corr_matrix = np.corrcoef(data_matrix.T)
        
        # Find strongest feature pairs
        pairs = []
        n_features = corr_matrix.shape[0]
        for i in range(n_features):
            for j in range(i+1, n_features):
                pairs.append((i, j, abs(corr_matrix[i, j])))
        
        # Sort by correlation strength
        pairs.sort(key=lambda x: x[2], reverse=True)
        
        # Return top correlations
        top_pairs = {}
        for i, j, strength in pairs[:5]:  # Top 5 correlations
            if strength > 0.4:  # Only meaningful correlations
                key = f"feature_{i}_feature_{j}"
                top_pairs[key] = strength
        
        return top_pairs
    
    def train(self, data, epochs=1, learning_rate=0.01, growth_frequency=10):
        """

        Train the dendritic network on stock data.

        The network adapts its structure based on patterns in the data.

        """
        if data.empty:
            return
        
        # First determine market regime
        self.detect_market_regime(data)
        
        # Preprocess data
        scaled_data = self.preprocess_data(data)
        
        if len(scaled_data) == 0:
            return
        
        # Initialize memory buffer
        self.memory_buffer = []
        
        # Train for specified number of epochs
        for epoch in range(epochs):
            # Track predictions for evaluation
            predicted_values = []
            actual_values = []
            
            # Process each time step
            for i in range(len(scaled_data) - 1):
                current_vector = scaled_data[i]
                future_vector = scaled_data[i + 1]
                
                # Add to memory buffer
                self.memory_buffer.append(current_vector)
                if len(self.memory_buffer) > self.memory_window:
                    self.memory_buffer.pop(0)
                
                # Find pattern correlations periodically
                if i % 20 == 0 and len(self.memory_buffer) > 5:
                    self.find_pattern_correlations(self.memory_buffer)
                
                # Activate dendrites
                root_activation = self.root.activate(current_vector, learning_rate)
                
                # Make a prediction before seeing the next value
                if i > self.memory_window:
                    prediction = self.predict_next()
                    if prediction is not None and len(prediction) > 0:
                        # For now, just use first feature (price) for evaluation
                        predicted_values.append(prediction[0])
                        actual_values.append(future_vector[0])
                
                # Update dendrite predictions
                self._update_predictions(future_vector, learning_rate)
                
                # Periodically grow new dendrites or prune weak ones
                if i % growth_frequency == 0:
                    self._adapt_structure(current_vector, learning_rate)
            
            # Calculate prediction accuracy for this epoch
            if predicted_values and actual_values:
                # Calculate directional accuracy (up/down)
                pred_dir = []
                actual_dir = []
                
                for i in range(1, len(predicted_values)):
                    # Predicted direction: is next predicted value higher than current actual?
                    pred_dir.append(1 if predicted_values[i] > actual_values[i-1] else 0)
                    # Actual direction: is next actual value higher than current actual?
                    actual_dir.append(1 if actual_values[i] > actual_values[i-1] else 0)
                
                if pred_dir and actual_dir:
                    accuracy = sum(p == a for p, a in zip(pred_dir, actual_dir)) / len(pred_dir)
                    self.prediction_accuracy.append(accuracy)
                    
                    # Store for analysis
                    self.predicted_directions.extend(pred_dir)
                    self.actual_directions.extend(actual_dir)
                    
                    if epoch == epochs - 1:  # Only on last epoch
                        st.write(f"Epoch {epoch+1}: Directional Accuracy = {accuracy:.4f}")
        
        # Calculate fractal dimension after training
        self.estimate_fractal_dimension()
    
    def _update_predictions(self, future_vector, learning_rate):
        """Update prediction vectors throughout the network"""
        # Only update if we have enough memory
        if len(self.memory_buffer) < 2:
            return
        
        # Get last and current vectors
        current_vector = self.memory_buffer[-1]
        
        def update_node_predictions(node, level_learning_rate):
            # Update this node's prediction
            node.update_prediction(future_vector, level_learning_rate)
            
            # Recursively update child nodes with diminishing learning rate
            child_lr = level_learning_rate * 0.9  # Reduce learning rate for children
            for child in node.children:
                update_node_predictions(child, child_lr)
        
        # Start from root with base learning rate
        update_node_predictions(self.root, learning_rate)
    
    def _adapt_structure(self, current_vector, learning_rate):
        """Adapt the dendritic structure by growing or pruning dendrites"""
        # Grow new dendrites where useful
        def adapt_node(node):
            # Probabilistic growth based on activation, strength, and level
            growth_prob = node.strength * node.growth_factor * (1.0 / (node.level + 1))
            if np.random.random() < growth_prob and node.level < self.max_levels - 1:
                # Determine feature for new dendrite
                if node.level == 0:
                    # First level dendrites track specific features
                    # Prioritize features based on their importance
                    feature_weights = self.feature_importance + 0.1  # Avoid zero probability
                    feature_idx = np.random.choice(
                        range(self.input_dim), 
                        p=feature_weights/np.sum(feature_weights)
                    )
                    
                    # Create dendrite with threshold biased toward discriminating values
                    if current_vector[feature_idx] > 0.7:
                        threshold = np.random.uniform(0.6, 0.9)  # High threshold
                    elif current_vector[feature_idx] < 0.3:
                        threshold = np.random.uniform(0.1, 0.4)  # Low threshold
                    else:
                        threshold = np.random.uniform(0.3, 0.7)  # Middle threshold
                    
                    node.grow_dendrite(feature_index=feature_idx, threshold=threshold)
                else:
                    # Higher level dendrites can track patterns across features
                    threshold = np.random.uniform(0.3, 0.7)
                    node.grow_dendrite(threshold=threshold)
            
            # Recursively adapt children
            for child in node.children:
                adapt_node(child)
        
        # Update feature importance based on current activation
        if len(self.memory_buffer) > 1:
            last_vector = self.memory_buffer[-2]
            current_vector = self.memory_buffer[-1]
            
            # Changes in features that correlate with changes in price are important
            price_change = current_vector[0] - last_vector[0]
            for i in range(1, min(len(current_vector), len(self.feature_importance))):
                feature_change = current_vector[i] - last_vector[i]
                importance_update = abs(feature_change * price_change) * 0.1
                self.feature_importance[i] = self.feature_importance[i] * 0.99 + importance_update
            
            # Normalize
            self.feature_importance = self.feature_importance / np.sum(self.feature_importance)
        
        # Start adaptation from root
        adapt_node(self.root)
        
        # Periodically prune weak dendrites, but less often in early training
        if np.random.random() < 0.15:  # 15% chance to prune
            min_strength = 0.15  # Lower threshold to keep more dendrites
            self.root.prune_weak_dendrites(min_strength=min_strength)
    
    def predict_next(self):
        """

        Generate a prediction for the next time step based on recent memory

        and dendrite activation patterns

        """
        if not self.memory_buffer:
            return None
        
        # Get latest input
        current_vector = self.memory_buffer[-1]
        
        # Activate the network with current input
        self.root.activate(current_vector, learning_rate=0)  # Don't learn during prediction
        
        # Collect predictions from all dendrites
        predictions = []
        
        def collect_predictions(node, weight=1.0):
            pred = node.predict()
            if pred is not None:
                # Weight by strength, prediction confidence, and node level
                effective_weight = weight * node.strength * node.prediction_confidence
                
                # Named dendrites get extra weight
                if node.name is not None:
                    effective_weight *= 1.5
                    
                # Adjust weight based on current market regime
                if self.current_regime == "bullish" and node.name and "bull" in node.name:
                    effective_weight *= 1.5
                elif self.current_regime == "bearish" and node.name and "bear" in node.name:
                    effective_weight *= 1.5
                    
                predictions.append((pred, effective_weight))
            
            for child in node.children:
                # Deeper nodes have less influence
                child_weight = weight * 0.9
                collect_predictions(child, child_weight)
        
        # Start collection from root
        collect_predictions(self.root)
        
        # Combine weighted predictions
        if not predictions:
            return None
        
        # Weight by dendrite strength and confidence
        weighted_sum = np.zeros_like(predictions[0][0])
        total_weight = 0
        
        for pred, weight in predictions:
            weighted_sum += pred * weight
            total_weight += weight
        
        if total_weight > 0:
            return weighted_sum / total_weight
        return None
    
    def predict_days_ahead(self, days_ahead=5, current_data=None):
        """

        Make predictions for multiple days ahead by feeding predictions

        back into the network

        """
        if current_data is not None:
            # Reset memory with latest actual data
            scaled_data = self.preprocess_data(current_data)
            self.memory_buffer = list(scaled_data[-self.memory_window:])
        
        if not self.memory_buffer:
            return None
        
        # Start with current memory state
        predictions = []
        confidences = []
        
        # Get current market regime for context
        if current_data is not None:
            self.detect_market_regime(current_data)
        
        # Make sequential predictions
        for day in range(days_ahead):
            # Predict next day
            next_day = self.predict_next()
            if next_day is None:
                break
            
            # Calculate confidence based on dendrite activations
            confidence = 0.5  # Default confidence
            
            # Higher confidence if dendrites agree
            if len(self.memory_buffer) > 1:
                # Check if dendrites show consistent pattern recognition
                pattern_consistency = 0
                total_patterns = 0
                
                for child in self.root.children:
                    if child.name is not None and len(child.activation_history) > 2:
                        # Check for consistent activation pattern
                        recent_acts = child.activation_history[-3:]
                        if all(a > 0.6 for a in recent_acts) or all(a < 0.4 for a in recent_acts):
                            pattern_consistency += 1
                        total_patterns += 1
                
                if total_patterns > 0:
                    consistency_score = pattern_consistency / total_patterns
                    confidence = 0.5 + 0.4 * consistency_score
            
            # Adjust confidence based on volatility
            if len(self.volatility_history) > 0:
                recent_vol = self.volatility_history[-1]
                # Lower confidence when volatility is high
                confidence -= min(0.2, recent_vol)
            
            # Add predictions and confidence
            predictions.append(next_day)
            confidences.append(confidence)
            
            # Update memory with prediction
            self.memory_buffer.append(next_day)
            if len(self.memory_buffer) > self.memory_window:
                self.memory_buffer.pop(0)
        
        return np.array(predictions), np.array(confidences)
    
    def get_trading_signals(self, predictions, confidences, threshold=None):
        """

        Convert predictions to trading signals

        threshold: confidence level needed for a buy/sell signal

        """
        if predictions is None or len(predictions) == 0:
            return []
        
        # Use adaptive threshold based on market regime if not specified
        if threshold is None:
            threshold = self.confidence_threshold
        
        signals = []
        for i, (pred, conf) in enumerate(zip(predictions, confidences)):
            # Use the first feature (price) direction for signal
            price_direction = pred[0]  # Scaled between 0-1
            
            # Adjust confidence threshold based on market regime
            adjusted_threshold = threshold
            if self.current_regime == "volatile":
                adjusted_threshold += 0.05  # Higher threshold in volatile markets
            elif self.current_regime == "sideways":
                adjusted_threshold += 0.02  # Slightly higher in sideways markets
            
            # Generate signals based on confidence-adjusted threshold
            if price_direction > 0.5 + (adjusted_threshold - 0.5) and conf > adjusted_threshold:
                signals.append('BUY')
            elif price_direction < 0.5 - (adjusted_threshold - 0.5) and conf > adjusted_threshold:
                signals.append('SELL')
            else:
                signals.append('HOLD')
        
        return signals
        
    def visualize_dendrites(self, max_nodes=50):
        """Generate a visualization of the dendrite network structure"""
        # Count nodes at each level and compute average strengths
        level_counts = {}
        level_strengths = {}
        active_nodes = {}
        named_nodes = {}
        
        def traverse_node(node):
            if node.level not in level_counts:
                level_counts[node.level] = 0
                level_strengths[node.level] = []
                active_nodes[node.level] = 0
                named_nodes[node.level] = []
            
            level_counts[node.level] += 1
            level_strengths[node.level].append(node.strength)
            
            if node.strength > 0.6:
                active_nodes[node.level] += 1
            
            if node.name is not None:
                named_nodes[node.level].append((node.name, node.strength))
            
            for child in node.children:
                traverse_node(child)
        
        traverse_node(self.root)
        
        # Create visualization
        fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(14, 6))
        
        # Plot 1: Node counts by level
        levels = sorted(level_counts.keys())
        counts = [level_counts[level] for level in levels]
        
        ax1.bar(levels, counts, alpha=0.7)
        ax1.set_xlabel('Dendrite Level')
        ax1.set_ylabel('Number of Dendrites')
        ax1.set_title(f'Dendritic Network Structure (Fractal Dimension: {self.fractal_dim:.3f})')
        
        # Add active node counts as a line
        active_counts = [active_nodes.get(level, 0) for level in levels]
        ax1_2 = ax1.twinx()
        ax1_2.plot(levels, active_counts, 'r-', marker='o')
        ax1_2.set_ylabel('Number of Active Dendrites (>0.6 strength)', color='r')
        ax1_2.tick_params(axis='y', labelcolor='r')
        
        # Plot 2: Average strengths by level
        avg_strengths = [np.mean(level_strengths.get(level, [0])) for level in levels]
        
        ax2.bar(levels, avg_strengths, color='green', alpha=0.7)
        ax2.set_xlabel('Dendrite Level')
        ax2.set_ylabel('Average Dendrite Strength')
        ax2.set_title('Dendrite Strength by Level')
        ax2.set_ylim([0, 1])
        
        # Add specialized dendrite info
        important_nodes = []
        for level in named_nodes:
            for name, strength in named_nodes[level]:
                if strength > 0.5:  # Only show strong specialized dendrites
                    important_nodes.append((name, level, strength))
        
        # Sort by strength
        important_nodes.sort(key=lambda x: x[2], reverse=True)
        
        # Display top nodes in a text box
        if important_nodes:
            node_text = "\n".join([f"{name}: {strength:.2f}" 
                                 for name, level, strength in important_nodes[:max_nodes]])
            ax2.text(1.05, 0.5, f"Strong Specialized Dendrites:\n{node_text}", 
                    transform=ax2.transAxes, fontsize=9,
                    verticalalignment='center', bbox=dict(boxstyle="round", alpha=0.1))
        
        # Add fractal dimension
        ax1.text(0.05, 0.95, f'Fractal Dimension: {self.fractal_dim:.3f}', 
                transform=ax1.transAxes, fontsize=10,
                verticalalignment='top', bbox=dict(boxstyle="round", alpha=0.1))
        
        plt.tight_layout()
        
        # Create grid visualization
        fd, grid = self.estimate_fractal_dimension()
        
        return fig, grid, important_nodes

    def evaluate_performance(self, test_data):
        """Evaluate prediction performance on test data"""
        if test_data.empty:
            return None
        
        # Get market regime for test data
        self.detect_market_regime(test_data)
        
        scaled_data = self.preprocess_data(test_data)
        
        if len(scaled_data) < self.memory_window + 1:
            return None
        
        # Initialize memory with beginning of test data
        self.memory_buffer = list(scaled_data[:self.memory_window])
        
        # Make predictions and compare with actual values
        predicted_values = []
        actual_values = []
        confidences = []
        
        for i in range(self.memory_window, len(scaled_data) - 1):
            # Current vector becomes last memory item
            current_vector = scaled_data[i]
            future_vector = scaled_data[i + 1]
            
            # Update memory
            self.memory_buffer.append(current_vector)
            if len(self.memory_buffer) > self.memory_window:
                self.memory_buffer.pop(0)
            
            # Predict next
            prediction = self.predict_next()
            if prediction is not None:
                # For simplicity, just use first feature (price) for evaluation
                predicted_values.append(prediction[0])
                actual_values.append(future_vector[0])
                
                # Calculate prediction confidence
                confidence = 0.5  # Default
                
                # Higher confidence if dendrites agree
                pattern_consistency = 0
                total_patterns = 0
                
                for child in self.root.children:
                    if child.name is not None and len(child.activation_history) > 0:
                        recent_act = child.activation_history[-1]
                        if recent_act > 0.7 or recent_act < 0.3:  # Strong signal
                            pattern_consistency += 1
                        total_patterns += 1
                
                if total_patterns > 0:
                    consistency_score = pattern_consistency / total_patterns
                    confidence = 0.5 + 0.3 * consistency_score
                
                confidences.append(confidence)
        
        if not predicted_values:
            return None
        
        # Calculate directional prediction metrics
        pred_directions = []
        actual_directions = []
        
        for i in range(1, len(predicted_values)):
            # Predicted direction: is next predicted value higher than current actual?
            pred_dir = 1 if predicted_values[i] > actual_values[i-1] else 0
            # Actual direction: is next actual value higher than current actual?
            actual_dir = 1 if actual_values[i] > actual_values[i-1] else 0
            
            pred_directions.append(pred_dir)
            actual_directions.append(actual_dir)
        
        # Calculate directional accuracy
        dir_accuracy = sum(p == a for p, a in zip(pred_directions, actual_directions)) / len(pred_directions) if pred_directions else 0
        
        # Calculate RMSE on scaled values
        rmse = np.sqrt(np.mean((np.array(predicted_values) - np.array(actual_values)) ** 2))
        
        # Calculate confidence-weighted accuracy
        weighted_correct = 0
        total_weight = 0
        
        for i in range(len(pred_directions)):
            if i < len(confidences):
                weight = confidences[i]
                if pred_directions[i] == actual_directions[i]:
                    weighted_correct += weight
                total_weight += weight
        
        confidence_accuracy = weighted_correct / total_weight if total_weight > 0 else 0
        
        # Calculate profitability metrics
        # Simple simulation of buying/selling based on predictions
        initial_capital = 10000
        capital = initial_capital
        position = 0  # Shares held
        
        # Get original price data from test data for more realistic simulation
        prices = test_data['Close'].values[-len(pred_directions)-1:]
        
        for i in range(len(pred_directions)):
            current_price = prices[i]
            next_price = prices[i+1]
            
            # If we predict up and don't have a position, buy
            if pred_directions[i] == 1 and position == 0:
                position = capital / current_price
                capital = 0
            # If we predict down and have a position, sell
            elif pred_directions[i] == 0 and position > 0:
                capital = position * current_price
                position = 0
        
        # Liquidate final position
        if position > 0:
            capital = position * prices[-1]
        
        # Calculate returns
        strategy_return = (capital / initial_capital - 1) * 100
        buy_hold_return = (prices[-1] / prices[0] - 1) * 100
        
        return {
            'directional_accuracy': dir_accuracy,
            'confidence_weighted_accuracy': confidence_accuracy,
            'rmse': rmse,
            'predictions': predicted_values,
            'actual': actual_values,
            'predicted_directions': pred_directions,
            'actual_directions': actual_directions,
            'confidences': confidences,
            'strategy_return': strategy_return,
            'buy_hold_return': buy_hold_return,
            'market_regime': self.current_regime,
            'test_data_length': len(test_data)
        }

# Fetch stock and currency data
def fetch_stock_data(ticker, period="2y", interval="1d"):
    """Fetch stock data from Yahoo Finance"""
    try:
        stock = yf.Ticker(ticker)
        data = stock.history(period=period, interval=interval)
        return data
    except Exception as e:
        st.error(f"Error fetching stock data: {e}")
        return pd.DataFrame()

def fetch_currency_data(currencies=["EURUSD=X", "JPYUSD=X", "CNYUSD=X"], period="2y", interval="1d"):
    """Fetch currency data for Euro, Yen, and Yuan against USD"""
    try:
        currency_data = {}
        for curr in currencies:
            ticker = yf.Ticker(curr)
            data = ticker.history(period=period, interval=interval)
            if not data.empty:
                currency_data[curr.replace('=X', '')] = data['Close']
        
        return pd.DataFrame(currency_data)
    except Exception as e:
        st.error(f"Error fetching currency data: {e}")
        return pd.DataFrame()

def fetch_sector_data(sectors=None, period="2y"):
    """Fetch sector ETF data for additional context"""
    if sectors is None:
        # Default technology sector ETF
        sectors = ["XLK"]  # Technology sector ETF
    
    try:
        sector_data = {}
        for sector in sectors:
            ticker = yf.Ticker(sector)
            data = ticker.history(period=period)
            if not data.empty:
                sector_data[sector] = data['Close']
        
        return pd.DataFrame(sector_data)
    except Exception as e:
        st.error(f"Error fetching sector data: {e}")
        return pd.DataFrame()

def train_test_split(data, test_size=0.2):
    """Split data into training and testing sets"""
    if data.empty:
        return pd.DataFrame(), pd.DataFrame()
    
    split_idx = int(len(data) * (1 - test_size))
    train_data = data.iloc[:split_idx].copy()
    test_data = data.iloc[split_idx:].copy()
    return train_data, test_data

def compare_with_baseline(test_data, dsa_results):
    """Compare DSA performance with simple baseline models and ML benchmarks"""
    if test_data.empty or dsa_results is None:
        return {}
    
    # Extract closing prices for simplicity
    closes = test_data['Close'].values
    
    # Baseline 1: Previous day prediction (assumption: tomorrow = today)
    prev_day_accuracy = 0.5  # Default to random guessing
    if len(closes) > 2:
        # Simply predict the same direction as previous day
        baseline1_dir_pred = []
        baseline1_dir_actual = []
        
        for i in range(1, len(closes)-1):
            # Previous day direction
            prev_direction = 1 if closes[i] > closes[i-1] else 0
            # Actual next day direction
            actual_direction = 1 if closes[i+1] > closes[i] else 0
            
            baseline1_dir_pred.append(prev_direction)
            baseline1_dir_actual.append(actual_direction)
        
        prev_day_accuracy = sum(p == a for p, a in zip(baseline1_dir_pred, baseline1_dir_actual)) / len(baseline1_dir_pred)
    
    # Baseline 2: Simple moving average (10-day)
    ma_period = 10
    ma_accuracy = 0.5  # Default to random guessing
    
    if len(closes) > ma_period + 1:
        ma_dir_pred = []
        ma_dir_actual = []
        
        for i in range(ma_period, len(closes)-1):
            ma_value = np.mean(closes[i-ma_period:i])
            ma_dir = 1 if closes[i] > ma_value else 0  # If current price > MA, predict up
            actual_dir = 1 if closes[i+1] > closes[i] else 0
            
            ma_dir_pred.append(ma_dir)
            ma_dir_actual.append(actual_dir)
        
        ma_accuracy = sum(p == a for p, a in zip(ma_dir_pred, ma_dir_actual)) / len(ma_dir_pred)
    
    # Baseline 3: Linear regression on recent prices
    lr_period = 14
    lr_accuracy = 0.5  # Default to random guessing
    
    if len(closes) > lr_period + 1:
        lr_dir_pred = []
        lr_dir_actual = []
        
        for i in range(lr_period, len(closes)-1):
            X = np.arange(lr_period).reshape(-1, 1)
            y = closes[i-lr_period:i]
            slope, intercept, _, _, _ = linregress(X.flatten(), y)
            
            # Predict trend direction based on slope
            lr_dir = 1 if slope > 0 else 0
            actual_dir = 1 if closes[i+1] > closes[i] else 0
            
            lr_dir_pred.append(lr_dir)
            lr_dir_actual.append(actual_dir)
        
        lr_accuracy = sum(p == a for p, a in zip(lr_dir_pred, lr_dir_actual)) / len(lr_dir_pred)
    
    # Baseline 4: MACD crossover strategy
    macd_accuracy = 0.5  # Default
    
    if len(test_data) > 26:  # Need at least 26 days for MACD
        # Calculate MACD
        ema12 = test_data['Close'].ewm(span=12, adjust=False).mean()
        ema26 = test_data['Close'].ewm(span=26, adjust=False).mean()
        macd_line = ema12 - ema26
        signal_line = macd_line.ewm(span=9, adjust=False).mean()
        
        # Generate signals
        macd_dir_pred = []
        macd_dir_actual = []
        
        for i in range(26, len(test_data)-1):
            # MACD crossover: Buy when MACD crosses above signal line
            macd_val = macd_line.iloc[i]
            signal_val = signal_line.iloc[i]
            macd_prev = macd_line.iloc[i-1]
            signal_prev = signal_line.iloc[i-1]
            
            # Bullish crossover: MACD crosses above signal line
            bullish = macd_prev < signal_prev and macd_val > signal_val
            # Bearish crossover: MACD crosses below signal line
            bearish = macd_prev > signal_prev and macd_val < signal_val
            
            if bullish:
                pred = 1  # Predict up
            elif bearish:
                pred = 0  # Predict down
            else:
                # No crossover, maintain previous direction
                pred = 1 if macd_val > signal_val else 0
            
            actual = 1 if test_data['Close'].iloc[i+1] > test_data['Close'].iloc[i] else 0
            
            macd_dir_pred.append(pred)
            macd_dir_actual.append(actual)
        
        if macd_dir_pred:
            macd_accuracy = sum(p == a for p, a in zip(macd_dir_pred, macd_dir_actual)) / len(macd_dir_pred)
    
    # Add a random baseline
    random_accuracy = 0.5  # Theoretical random guessing accuracy
    
    # Calculate the theoretical best possible accuracy
    max_accuracy = max(prev_day_accuracy, ma_accuracy, lr_accuracy, macd_accuracy, random_accuracy)
    improvement = ((dsa_results['directional_accuracy'] / max_accuracy) - 1) * 100 if max_accuracy > 0 else 0
    
    # Calculate the profitability comparison
    strategy_return = dsa_results.get('strategy_return', 0)
    buy_hold_return = dsa_results.get('buy_hold_return', 0)
    
    return {
        'dsa_accuracy': dsa_results['directional_accuracy'],
        'dsa_confidence_accuracy': dsa_results.get('confidence_weighted_accuracy', 0),
        'previous_day_accuracy': prev_day_accuracy,
        'moving_average_accuracy': ma_accuracy,
        'linear_regression_accuracy': lr_accuracy,
        'macd_accuracy': macd_accuracy,
        'random_guessing': random_accuracy,
        'max_baseline_accuracy': max_accuracy,
        'improvement_percentage': improvement,
        'dsa_return': strategy_return,
        'buy_hold_return': buy_hold_return
    }

# Interactive Streamlit app for visualization
def main():
    st.title("Enhanced Dendritic Stock Algorithm (DSA)")
    st.markdown("""

    ### Hierarchical Dendritic Network for Stock Prediction

    

    This system implements a biological-inspired dendritic network that forms fractal patterns

    at the boundaries between different processing regimes. These patterns emerge naturally

    from the self-organizing dynamics, demonstrating our theory about boundary-emergent complexity.

    """)
    
    st.sidebar.header("Settings")
    
    # Stock selection
    ticker_options = {
        "Apple": "AAPL",
        "Microsoft": "MSFT",
        "Google": "GOOGL",
        "Amazon": "AMZN",
        "Tesla": "TSLA",
        "Meta": "META",
        "Nvidia": "NVDA",
        "Berkshire Hathaway": "BRK-B",
        "Visa": "V",
        "JPMorgan Chase": "JPM",
        "S&P 500 ETF": "SPY",
        "Nasdaq ETF": "QQQ"
    }
    
    ticker_name = st.sidebar.selectbox(
        "Select Stock", 
        list(ticker_options.keys()),
        index=0
    )
    ticker = ticker_options[ticker_name]
    
    # Add option for custom ticker
    custom_ticker = st.sidebar.text_input("Or enter custom ticker:", "")
    if custom_ticker:
        ticker = custom_ticker.upper()
    
    # Optional sector ETF to include
    include_sector = st.sidebar.checkbox("Include Sector ETF data", value=True)
    sector_etf = None
    if include_sector:
        sector_etf = st.sidebar.selectbox(
            "Select Sector ETF", 
            ["XLK", "XLF", "XLE", "XLV", "XLI", "XLY", "XLP", "XLU", "XLB", "XLRE"],
            index=0,
            help="XLK=Technology, XLF=Financials, XLE=Energy, XLV=Healthcare, XLI=Industrials"
        )
    
    # Training parameters
    st.sidebar.subheader("Training Parameters")
    train_period = st.sidebar.selectbox(
        "Training Period", 
        ["6mo", "1y", "2y", "5y", "max"],
        index=1
    )
    test_size = st.sidebar.slider("Test Data Size (%)", 10, 50, 20)
    epochs = st.sidebar.slider("Training Epochs", 1, 10, 3)
    
    # Network parameters
    st.sidebar.subheader("Network Parameters")
    dendrites_per_level = st.sidebar.slider("Initial Dendrites per Level", 3, 20, 10)
    max_levels = st.sidebar.slider("Maximum Hierarchy Levels", 1, 5, 3)
    memory_window = st.sidebar.slider("Memory Window (Days)", 5, 30, 15)
    
    # Prediction parameters
    st.sidebar.subheader("Prediction Parameters")
    days_ahead = st.sidebar.slider("Days to Predict Ahead", 1, 30, 5)
    signal_threshold = st.sidebar.slider("Base Signal Threshold", 0.51, 0.99, 0.55, 
                                       help="Higher values require more confidence for buy/sell signals")
    
    # Advanced options
    st.sidebar.subheader("Advanced Options")
    show_advanced = st.sidebar.checkbox("Show Advanced Metrics", value=False)
    
    # Load data on button click
    if st.sidebar.button("Load Data and Train"):
        # Show loading message
        with st.spinner("Fetching stock and market data..."):
            stock_data = fetch_stock_data(ticker, period=train_period)
            
            if stock_data.empty:
                st.error(f"No data found for ticker {ticker}")
            else:
                # Progress bar for all steps
                progress_bar = st.progress(0)
                total_steps = 7
                current_step = 0
                
                # Show basic info
                st.subheader(f"{ticker} Stock Information")
                st.write(f"Data from {stock_data.index[0].date()} to {stock_data.index[-1].date()}")
                st.write(f"Total days: {len(stock_data)}")
                
                # Fetch currency data
                currency_data = fetch_currency_data(period=train_period)
                if not currency_data.empty:
                    st.write("Currency data loaded:", list(currency_data.columns))
                
                # Add sector data if requested
                sector_data = None
                if include_sector and sector_etf:
                    sector_data = fetch_sector_data([sector_etf], period=train_period)
                    if not sector_data.empty:
                        st.write(f"Sector ETF data loaded: {sector_etf}")
                
                # Progress update
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                
                # Add currency data to stock data
                combined_data = stock_data.copy()
                if not currency_data.empty:
                    for curr in currency_data.columns:
                        # Align currency data to stock data dates
                        currency_aligned = currency_data[curr].reindex(combined_data.index, method='ffill')
                        combined_data[f'Currency_{curr}'] = currency_aligned
                
                # Add sector data if available
                if sector_data is not None and not sector_data.empty:
                    for sect in sector_data.columns:
                        # Align sector data to stock data dates
                        sector_aligned = sector_data[sect].reindex(combined_data.index, method='ffill')
                        # Calculate daily returns
                        combined_data[f'Sector_{sect}'] = sector_aligned.pct_change().fillna(0)
                
                # Progress update
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                
                # Split into train/test
                train_data, test_data = train_test_split(combined_data, test_size=test_size/100)
                
                # Create and configure network
                feature_count = 16  # Fixed based on extract_features method
                network = HierarchicalDendriticNetwork(
                    input_dim=feature_count,
                    max_levels=max_levels,
                    initial_dendrites_per_level=dendrites_per_level
                )
                network.memory_window = memory_window
                
                # Progress update
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                
                # Train the network
                with st.spinner("Training dendritic network..."):
                    network.train(train_data, epochs=epochs)
                
                # Progress update
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                
                # Evaluate on test data
                with st.spinner("Evaluating performance..."):
                    eval_results = network.evaluate_performance(test_data)
                    
                    if eval_results:
                        st.subheader("Performance Evaluation")
                        st.write(f"Directional Accuracy: {eval_results['directional_accuracy']:.4f}")
                        st.write(f"Confidence-Weighted Accuracy: {eval_results['confidence_weighted_accuracy']:.4f}")
                        st.write(f"RMSE (scaled): {eval_results['rmse']:.4f}")
                        st.write(f"Detected Market Regime: {eval_results['market_regime'].upper()}")
                        
                        # Show returns
                        st.write(f"DSA Trading Return: {eval_results['strategy_return']:.2f}%")
                        st.write(f"Buy & Hold Return: {eval_results['buy_hold_return']:.2f}%")
                        
                        # Compare with baselines
                        baseline_results = compare_with_baseline(test_data, eval_results)
                        
                        # Progress update
                        current_step += 1
                        progress_bar.progress(current_step / total_steps)
                        
                        if baseline_results:
                            st.subheader("Comparison with Baseline Models")
                            
                            # Format improvement percentage
                            improvement = baseline_results.get('improvement_percentage', 0)
                            improvement_text = f"+{improvement:.2f}%" if improvement > 0 else f"{improvement:.2f}%"
                            
                            results_df = pd.DataFrame({
                                'Model': [
                                    f"Dendritic Stock Algorithm ({improvement_text})",
                                    'Previous Day Strategy', 
                                    'Moving Average', 
                                    'Linear Regression',
                                    'MACD Crossover',
                                    'Random Guessing'
                                ],
                                'Directional Accuracy': [
                                    baseline_results['dsa_accuracy'], 
                                    baseline_results['previous_day_accuracy'],
                                    baseline_results['moving_average_accuracy'],
                                    baseline_results['linear_regression_accuracy'],
                                    baseline_results['macd_accuracy'],
                                    baseline_results['random_guessing']
                                ]
                            })
                            
                            # Plot comparison
                            fig = px.bar(results_df, x='Model', y='Directional Accuracy',
                                         title="Model Comparison - Directional Accuracy",
                                         color='Directional Accuracy', 
                                         color_continuous_scale=px.colors.sequential.Blues)
                            
                            fig.add_hline(y=0.5, line_dash="dash", line_color="red", 
                                         annotation_text="Random Guess (50%)")
                            
                            fig.update_layout(
                                yaxis_range=[0.4, max(0.75, baseline_results['dsa_accuracy'] * 1.1)],
                                xaxis_title="",
                                yaxis_title="Directional Accuracy"
                            )
                            
                            st.plotly_chart(fig, use_container_width=True)
                            
                            # Show return comparison
                            returns_df = pd.DataFrame({
                                'Strategy': ['Dendritic Stock Algorithm', 'Buy & Hold'],
                                'Return (%)': [
                                    baseline_results['dsa_return'],
                                    baseline_results['buy_hold_return']
                                ]
                            })
                            
                            fig_returns = px.bar(returns_df, x='Strategy', y='Return (%)',
                                               title="Return Comparison",
                                               color='Return (%)', 
                                               color_continuous_scale=px.colors.sequential.Greens)
                            
                            st.plotly_chart(fig_returns, use_container_width=True)
                
                # Progress update
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                
                # Make future predictions
                with st.spinner("Generating predictions..."):
                    latest_data = combined_data.tail(memory_window)
                    predictions, confidences = network.predict_days_ahead(days_ahead, latest_data)
                    
                    if predictions is not None:
                        signals = network.get_trading_signals(predictions, confidences, signal_threshold)
                        
                        # Convert predictions back to price scale
                        latest_close = latest_data['Close'].iloc[-1]
                        prediction_values = []
                        
                        # Scale based on the first feature (price) direction
                        for i, pred in enumerate(predictions):
                            if i == 0:
                                direction = 1 if pred[0] > 0.5 else -1
                                # Adjust strength by distance from 0.5
                                strength = abs(pred[0] - 0.5) * 4  # Max 2% change
                                predicted_price = latest_close * (1 + direction * strength/100)
                            else:
                                prev_predicted = prediction_values[-1]
                                direction = 1 if pred[0] > 0.5 else -1
                                strength = abs(pred[0] - 0.5) * 4
                                predicted_price = prev_predicted * (1 + direction * strength/100)
                            
                            prediction_values.append(predicted_price)
                        
                        # Create date range for predictions
                        last_date = latest_data.index[-1]
                        prediction_dates = pd.date_range(start=last_date + pd.Timedelta(days=1), periods=days_ahead, freq='B')
                        
                        # Display predictions
                        st.subheader(f"Predictions for Next {days_ahead} Trading Days")
                        
                        pred_df = pd.DataFrame({
                            'Date': prediction_dates,
                            'Predicted Price': [f"${price:.2f}" for price in prediction_values],
                            'Signal': signals,
                            'Confidence': [f"{conf:.2f}" for conf in confidences]
                        })
                        
                        st.dataframe(pred_df, use_container_width=True)
                        
                        # Plot historical + predictions
                        fig = go.Figure()
                        
                        # Add historical prices
                        fig.add_trace(go.Scatter(
                            x=combined_data.index,
                            y=combined_data['Close'],
                            mode='lines',
                            name='Historical',
                            line=dict(color='blue', width=2)
                        ))
                        
                        # Add predictions
                        fig.add_trace(go.Scatter(
                            x=prediction_dates,
                            y=prediction_values,
                            mode='lines+markers',
                            name='Predicted',
                            line=dict(dash='dash', color='darkblue'),
                            marker=dict(size=10)
                        ))
                        
                        # Shade prediction confidence intervals
                        high_bound = [price * (1 + (1 - conf) * 0.05) for price, conf in zip(prediction_values, confidences)]
                        low_bound = [price * (1 - (1 - conf) * 0.05) for price, conf in zip(prediction_values, confidences)]
                        
                        fig.add_trace(go.Scatter(
                            x=prediction_dates,
                            y=high_bound,
                            mode='lines',
                            line=dict(width=0),
                            showlegend=False
                        ))
                        
                        fig.add_trace(go.Scatter(
                            x=prediction_dates,
                            y=low_bound,
                            mode='lines',
                            line=dict(width=0),
                            fill='tonexty',
                            fillcolor='rgba(0, 0, 255, 0.1)',
                            name='Confidence Interval'
                        ))
                        
                        # Add signals
                        for i, signal in enumerate(signals):
                            color = 'green' if signal == 'BUY' else 'red' if signal == 'SELL' else 'gray'
                            
                            fig.add_annotation(
                                x=prediction_dates[i],
                                y=prediction_values[i],
                                text=signal,
                                showarrow=True,
                                arrowhead=1,
                                arrowsize=1,
                                arrowwidth=2,
                                arrowcolor=color
                            )
                        
                        fig.update_layout(
                            title=f"{ticker} Stock Price with DSA Predictions",
                            xaxis_title="Date",
                            yaxis_title="Price",
                            legend_title="Data Source",
                            hovermode="x unified"
                        )
                        
                        st.plotly_chart(fig, use_container_width=True)
                
                # Progress update - complete
                current_step += 1
                progress_bar.progress(current_step / total_steps)
                progress_bar.empty()
                
                # Visualize dendritic network
                with st.spinner("Visualizing dendritic network..."):
                    st.subheader("Dendritic Network Visualization")
                    
                    # Network structure
                    fig, grid, important_nodes = network.visualize_dendrites()
                    st.pyplot(fig)
                    
                    # Activation grid (fractal visualization)
                    st.subheader("Dendritic Activation Pattern (The Fractal Boundary)")
                    st.markdown("""

                    This visualization represents the dendritic network's activation pattern, showing how information 

                    is processed at the boundaries between different dendrite clusters. The fractal patterns emerge 

                    at these boundaries - just as we discussed about event horizons and neural boundaries.

                    

                    Key observations:

                    - Brighter regions show stronger dendrite activations

                    - The complex patterns along boundaries represent areas where the network is processing the most information

                    - Higher fractal dimension values indicate more complex boundary structures, which typically correlate with better prediction capability

                    """)
                    
                    st.write(f"**Estimated Fractal Dimension: {network.fractal_dim:.3f}**")
                    
                    if network.fractal_dim > 1.5:
                        st.success("High fractal dimension suggests complex boundary processing - good for prediction!")
                    elif network.fractal_dim > 1.2:
                        st.info("Moderate fractal dimension indicates developing complexity at boundaries")
                    else:
                        st.warning("Low fractal dimension suggests simple boundaries - prediction may be limited")
                    
                    # Plot the grid as a heatmap
                    fig, ax = plt.subplots(figsize=(8, 8))
                    im = ax.imshow(grid, cmap='viridis')
                    plt.colorbar(im, ax=ax, label='Activation Strength')
                    ax.set_title("Dendritic Activation Grid - Fractal Boundary Patterns")
                    st.pyplot(fig)
                    
                    # Show important dendrites
                    if important_nodes:
                        st.subheader("Active Specialized Dendrites")
                        st.markdown("These specialized dendrites have developed strong activations, indicating the network has learned to recognize specific patterns:")
                        
                        # Format into two columns
                        col1, col2 = st.columns(2)
                        half_nodes = len(important_nodes) // 2 + len(important_nodes) % 2
                        
                        with col1:
                            for name, level, strength in important_nodes[:half_nodes]:
                                if strength > 0.7:
                                    st.success(f"**{name}:** {strength:.2f}")
                                elif strength > 0.5:
                                    st.info(f"**{name}:** {strength:.2f}")
                                else:
                                    st.write(f"**{name}:** {strength:.2f}")
                        
                        with col2:
                            for name, level, strength in important_nodes[half_nodes:]:
                                if strength > 0.7:
                                    st.success(f"**{name}:** {strength:.2f}")
                                elif strength > 0.5:
                                    st.info(f"**{name}:** {strength:.2f}")
                                else:
                                    st.write(f"**{name}:** {strength:.2f}")
                    
                    # Explain the connection to our theory
                    st.markdown("""

                    ### Connection to Boundary Theory

                    

                    The patterns you see above demonstrate our theory about boundary-emergent complexity:

                    

                    1. **Temporal Integration**: These patterns encode the network's memory (past), processing (present), and prediction (future)

                    

                    2. **Critical Behavior**: The dendrites naturally organize at the "edge of chaos" - not too ordered, not too random

                    

                    3. **Fractal Structure**: The self-similar patterns at multiple scales allow the system to recognize patterns across different timeframes

                    

                    This visual representation shows how our dendritic network creates complex structures at the boundaries between different processing regimes - exactly as our theory predicted.

                    """)
                    
                    # If advanced metrics were requested, show them
                    if show_advanced:
                        st.subheader("Advanced Analysis")
                        
                        # Show feature importance
                        feature_names = [
                            "Price", "Returns", "Volatility", "Volume", "Momentum", 
                            "MACD", "Bollinger", "RSI", "Stochastic", "ATR",
                            "OBV", "MFI", "SMA Dist", "EMA Cross", "Fibonacci"
                        ]
                        
                        # Only show top features to keep it clean
                        imp_idx = np.argsort(network.feature_importance)[-10:]
                        
                        feature_imp_df = pd.DataFrame({
                            'Feature': [feature_names[i] if i < len(feature_names) else f"Feature {i}" for i in imp_idx],
                            'Importance': network.feature_importance[imp_idx]
                        })
                        
                        fig_imp = px.bar(feature_imp_df, x='Feature', y='Importance',
                                       title="Feature Importance",
                                       color='Importance', 
                                       color_continuous_scale=px.colors.sequential.Viridis)
                        
                        st.plotly_chart(fig_imp, use_container_width=True)
                        
                        # Show prediction confidence over time
                        if 'confidences' in eval_results:
                            conf_df = pd.DataFrame({
                                'Time Step': list(range(len(eval_results['confidences']))),
                                'Confidence': eval_results['confidences']
                            })
                            
                            fig_conf = px.line(conf_df, x='Time Step', y='Confidence',
                                             title="Prediction Confidence Over Time")
                            
                            st.plotly_chart(fig_conf, use_container_width=True)

if __name__ == "__main__":
    main()