File size: 5,336 Bytes
50813cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import streamlit as st
import numpy as np
from scipy.ndimage import gaussian_filter
import plotly.graph_objects as go
from time import sleep

class NeuralFieldExplorer:
    def __init__(self, size=100, time_depth=50):
        self.size = size
        self.time_depth = time_depth
        self.energy_flow_history = np.zeros((time_depth, size, size))
        
        # Field parameters
        self.u = np.zeros((size, size))
        self.v = np.zeros((size, size))
        self.phi = np.zeros((size, size))
        
        # Initialize central disturbance
        self.u[size//2, size//2] = 2.0
        
        # Physics parameters
        self.dt = 0.1
        self.dx = 1.0
        self.dy = 1.0
        self.c = 1.0
        self.alpha = 0.05
        self.beta = 0.02
    
    def update_fields(self):
        laplacian = (
            -4 * self.u +
            np.roll(self.u, 1, axis=0) +
            np.roll(self.u, -1, axis=0) +
            np.roll(self.u, 1, axis=1) +
            np.roll(self.u, -1, axis=1)
        ) / (self.dx * self.dy)
        
        quantum_input = np.random.normal(0, 0.1, (self.size, self.size))
        classical_input = np.zeros((self.size, self.size))
        
        a = self.c**2 * laplacian - self.beta * self.v - self.alpha * (self.u**3) + quantum_input + classical_input
        v_new = self.v + a * self.dt
        u_new = self.u + v_new * self.dt
        phi_new = self.phi + (v_new * self.dt)
        
        self.u, self.v, self.phi = u_new, v_new, phi_new
        
    def calculate_energy_flow(self):
        grad_x = np.gradient(self.u, axis=0)
        grad_y = np.gradient(self.u, axis=1)
        energy_flow = np.sqrt(grad_x**2 + grad_y**2)
        energy_flow = gaussian_filter(energy_flow, sigma=1)
        return (energy_flow - energy_flow.min()) / (energy_flow.max() - energy_flow.min() + 1e-8)
    
    def update_history(self, energy_flow):
        self.energy_flow_history = np.roll(self.energy_flow_history, -1, axis=0)
        self.energy_flow_history[-1] = energy_flow

    def create_3d_visualization(self):
        x, y = np.meshgrid(np.arange(self.size), np.arange(self.size))
        
        # Create empty lists for our surface plots
        surfaces = []
        
        # Create a surface for each time slice
        for i in range(0, self.time_depth, 2):
            z = i * np.ones_like(x)
            
            # Create surface with custom coloring
            surfaces.append(
                go.Surface(
                    x=x,
                    y=y,
                    z=z,
                    surfacecolor=self.energy_flow_history[i],
                    showscale=False,
                    opacity=0.3,
                    colorscale='Magma'
                )
            )
        
        return surfaces

def main():
    st.title("🧠 Neural Field Pattern Explorer")
    st.write("Exploring the 3D structure of neural field patterns in real-time!")
    
    # Initialize session state
    if 'explorer' not in st.session_state:
        st.session_state.explorer = NeuralFieldExplorer()
        st.session_state.frame_count = 0
    
    # Control panel
    col1, col2, col3 = st.columns(3)
    with col1:
        running = st.checkbox('Run Simulation', value=True)
    with col2:
        speed = st.slider('Animation Speed', 1, 10, 5)
    with col3:
        transparency = st.slider('Layer Transparency', 0.1, 1.0, 0.3)
    
    # Create placeholders for our visualizations
    plot3d = st.empty()
    plot2d = st.empty()
    
    # Main simulation loop
    while running:
        # Update fields
        st.session_state.explorer.update_fields()
        energy_flow = st.session_state.explorer.calculate_energy_flow()
        st.session_state.explorer.update_history(energy_flow)
        
        # Create 3D visualization
        surfaces = st.session_state.explorer.create_3d_visualization()
        
        # Update 3D plot
        fig3d = go.Figure(data=surfaces)
        fig3d.update_layout(
            title='3D Neural Field Patterns',
            scene=dict(
                xaxis_title='X',
                yaxis_title='Y',
                zaxis_title='Time',
                camera=dict(
                    up=dict(x=0, y=0, z=1),
                    center=dict(x=0, y=0, z=0),
                    eye=dict(x=1.5, y=1.5, z=1.5)
                )
            ),
            width=800,
            height=600
        )
        
        # Update 2D plot
        fig2d = go.Figure(data=go.Heatmap(
            z=energy_flow,
            colorscale='Magma'
        ))
        fig2d.update_layout(
            title='Current Energy Flow',
            width=400,
            height=400
        )
        
        # Display plots
        plot3d.plotly_chart(fig3d, use_container_width=True)
        plot2d.plotly_chart(fig2d, use_container_width=True)
        
        # Control animation speed
        sleep(1.0 / speed)
        
        st.session_state.frame_count += 1
        
        # Break if checkbox is unchecked
        if not running:
            break

if __name__ == "__main__":
    st.set_page_config(page_title="Neural Field Explorer", layout="wide")
    main()