File size: 13,897 Bytes
f7ecb69
77b9c6f
5922875
a4c75f1
466c900
42b28e5
a4c75f1
b2c2432
aa00158
e2f6264
a4c75f1
 
 
e2f6264
aa00158
b2c2432
aa00158
 
dad09f2
ef6d74f
f7ecb69
5922875
608a413
f7ecb69
f163cb3
f7ecb69
313e518
f7ecb69
313e518
f7ecb69
313e518
f7ecb69
 
f163cb3
313e518
f7ecb69
f163cb3
 
f7ecb69
 
 
 
313e518
ceda1ed
f7ecb69
313e518
f7ecb69
313e518
 
 
f7ecb69
 
ceda1ed
 
2508cf4
2303155
 
 
 
 
 
 
 
 
 
25b3581
b7242c7
 
 
 
e273bef
 
 
 
 
 
 
b7242c7
 
e273bef
b7242c7
 
e273bef
b7242c7
 
e273bef
 
 
 
 
b7242c7
e273bef
 
 
 
b7242c7
e273bef
 
 
 
b7242c7
 
 
3a5974a
b7242c7
3a5974a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
80b4eec
4ff0ae4
 
 
 
 
 
 
 
 
 
 
 
 
44f211e
3685ccf
1ee827b
52b27c0
c75a9f8
097f802
427d9b2
c75a9f8
3685ccf
119da3b
 
 
3685ccf
119da3b
427d9b2
01d313d
3675f63
6762f17
8e85ee2
 
 
6762f17
427d9b2
8e85ee2
 
 
 
 
 
6762f17
 
 
 
8e85ee2
427d9b2
8e85ee2
6762f17
 
427d9b2
 
 
01d313d
427d9b2
52b27c0
3685ccf
44f211e
3685ccf
1c227e7
44f211e
f7ecb69
 
 
 
 
 
07f2e3e
 
b7242c7
 
 
 
25b3581
2303155
 
b7242c7
 
 
2303155
07f2e3e
b7242c7
3a5974a
 
 
 
 
1c13787
07f2e3e
1c13787
 
 
b6528b0
5e953eb
d66b3e2
5e953eb
4b331a2
219bc9e
4b331a2
 
07f2e3e
73ad984
5e953eb
 
 
07f2e3e
5e953eb
 
 
 
07f2e3e
 
 
 
 
5e953eb
 
 
 
07f2e3e
 
 
 
 
 
 
3a5974a
07f2e3e
 
1c13787
5e953eb
 
4b331a2
4c8b7ce
aa242c7
 
 
4c8b7ce
a3e70ba
 
 
 
 
 
 
 
6e718fc
6762f17
688544c
 
6762f17
4c8b7ce
ddebcda
202c24f
 
3685ccf
 
8d7c25e
 
3107ee7
8d7c25e
0ae6ca7
f7ecb69
1c13787
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, util
from sklearn.cluster import KMeans
import nltk
import pandas as pd
import smtplib
import os
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from nltk import tokenize
import numpy as np
import scipy.spatial
import csv


load_dotenv()

def generate_prompts(user_input):
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"Just list 10 question prompts for {user_input} and don't put number before each of the prompts."
    )
    config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
    llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
                        config=config)
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": user_input}

    generated_prompts = hub_chain.run(input_data)  
    questions_list = generated_prompts.split('\n') 
    

    formatted_questions = "\n".join(f"Question: {question}" for i, question in enumerate(questions_list) if question.strip())
    questions_list = formatted_questions.split("Question:")[1:]
    return questions_list

def answer_question(prompt):
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"give one answer for {prompt} and do not consider the number behind it."
    )
    config = {'max_new_tokens': 64, 'temperature': 0.7, 'context_length': 64}
    llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
                        config=config)
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": prompt}
    generated_answer = hub_chain.run(input_data)  
    return generated_answer

def calculate_similarity(word, other_words, model, threshold=0.5):
    embeddings_word = model.encode([word])
    embeddings_other_words = model.encode(other_words)
    for i, embedding in enumerate(embeddings_other_words):
        similarity = 1 - scipy.spatial.distance.cosine(embeddings_word[0], embedding)
        if similarity > threshold and similarity < 0.85:
            return i, similarity
    return None, None


def highlight_similar_paragraphs_with_colors(paragraphs, similarity_threshold=0.75):
    model = SentenceTransformer('all-MiniLM-L6-v2')
    
    # Split each paragraph into sentences
    all_sentences = [tokenize.sent_tokenize(paragraph) for paragraph in paragraphs]
    
    # Initialize storage for highlighted sentences
    highlighted_sentences = [['' for sentence in para] for para in all_sentences]
    colors = ['yellow', 'lightgreen', 'lightblue', 'pink', 'lavender', 'salmon', 'peachpuff', 'powderblue', 'khaki', 'wheat']
    
    # Track which sentences belong to which paragraph
    sentence_to_paragraph_index = [idx for idx, para in enumerate(all_sentences) for sentence in para]
    
    # Encode all sentences into vectors
    flattened_sentences = [sentence for para in all_sentences for sentence in para]
    sentence_embeddings = model.encode(flattened_sentences)
    
    # Calculate cosine similarities between all pairs of sentences
    cosine_similarities = util.pytorch_cos_sim(sentence_embeddings, sentence_embeddings)
    
    # Iterate through each sentence pair and highlight if they are similar but from different paragraphs
    color_index = 0
    for i, embedding_i in enumerate(sentence_embeddings):
        for j, embedding_j in enumerate(sentence_embeddings):
            if i != j and cosine_similarities[i, j] > similarity_threshold and sentence_to_paragraph_index[i] != sentence_to_paragraph_index[j]:
                color = colors[color_index % len(colors)]
                if highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] == '':
                    highlighted_sentences[sentence_to_paragraph_index[i]][i % len(all_sentences[sentence_to_paragraph_index[i]])] = ("<span style='color: "+  color  +"'>"+ flattened_sentences[i]+"</span>")
                if highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] == '':
                    highlighted_sentences[sentence_to_paragraph_index[j]][j % len(all_sentences[sentence_to_paragraph_index[j]])] = ("<span style='color: "+  color  +"'>"+ flattened_sentences[j]+"</span>")
                color_index += 1  # Move to the next color

    # Combine sentences back into paragraphs
    highlighted_paragraphs = [' '.join(para) for para in highlighted_sentences]

    # Combine all paragraphs into one HTML string
    html_output = '<div>' + '<br/><br/>'.join(highlighted_paragraphs) + '</div>'
    return highlighted_paragraphs

    
def calculate_similarity_score(sentences):
    # Encode all sentences to get their embeddings
    model = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings = model.encode(sentences)

    # Calculate average cosine similarity
    total_similarity = 0
    comparisons = 0
    for i in range(len(embeddings)):
        for j in range(i+1, len(embeddings)):
            # Cosine similarity between embeddings
            similarity = 1 - cosine(embeddings[i], embeddings[j])
            total_similarity += similarity
            comparisons += 1

    # Average similarity
    average_similarity = total_similarity / comparisons if comparisons > 0 else 0

    # Scale from [-1, 1] to [0, 100]
    score_out_of_100 = (average_similarity + 1) / 2 * 100
    return score_out_of_100

def answer_question1(prompt):
    prompt_template = PromptTemplate.from_template(
        input_variables=["Question"],
        template=f"give one answer for {prompt} and do not consider the number behind it."
    )
    config = {'max_new_tokens': 2048, 'temperature': 0.7, 'context_length': 4096}
    llm = CTransformers(model="TheBloke/Llama-2-7B-Chat-GGML",
                        config=config,
                        threads=os.cpu_count())
    hub_chain = LLMChain(prompt = prompt_template, llm = llm)
    input_data = {"Question": prompt}
    generated_answer = hub_chain.run(input_data)  
    return generated_answer

    
def process_inputs(llm, file, relevance, diversity):
    # Check if file is uploaded
    if file is not None:
        # Read questions from the uploaded Excel file
        try:
            df = pd.read_excel(file, engine='openpyxl')
        except Exception as e:
            return f"Failed to read Excel file: {e}", None

        # Ensure that there is only one column in the file
        if df.shape[1] != 1:
            return "The uploaded file must contain only one column of questions.", None

        # Extract the first column
        questions_list = df.iloc[:, 0]

        # Initialize lists to store the expanded data
        # Initialize lists to store the expanded data
        expanded_questions = []
        expanded_prompts = []
        expanded_answers = []

        # Generate prompts for each question and expand the data
        for question in questions_list:
            prompts = generate_prompts(question)
            expanded_questions.extend([question] * len(prompts))
            expanded_prompts.extend(prompts)

            # Generate answers for each prompt
            answers = [answer_question(prompt) for prompt in prompts]
            expanded_answers.extend(answers)

        # Combine the expanded data into a DataFrame
        output_df = pd.DataFrame({
            'Questions': expanded_questions,
            'Generated Prompts': expanded_prompts,
            'Answers': expanded_answers
        })

        # Save the DataFrame to a new Excel file
        output_file = "processed_questions.xlsx"
        output_df.to_excel(output_file, index=False)
    else:
        return "No questions provided.", None

    return "Processing complete. Download the file below.", output_file
    

text_list = []

def updateChoices(prompt):
    newChoices = generate_prompts(prompt)
    return gr.CheckboxGroup(choices=newChoices)

def setTextVisibility(cbg, model_name_input):

    sentences = [answer_question(text, model_name_input) for text in cbg]
    
    # Apply highlighting to all processed sentences, receiving one complete HTML string.
    highlighted_html = []
    highlighted_html = highlight_similar_paragraphs_with_colors(sentences, similarity_threshold=0.75)
    
    
    result = []
    # Iterate through each original 'cbg' sentence and pair it with the entire highlighted block.
    for idx, sentence in enumerate(highlighted_html):
        result.append("<p><strong>"+ cbg[idx] +"</strong></p><p>"+ sentence +"</p><br/>")

    score = round(calculate_similarity_score(highlighted_html))

    final_html = f"""<div>{result}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {score}</div></div>"""


    return final_html
    

    # update_show = [gr.Textbox(visible=True, label=text, value=answer_question(text, model_name_input)) for text in cbg]
    # update_hide = [gr.Textbox(visible=False, label="") for _ in range(10-len(cbg))]
    # return update_show + update_hide

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    
    with gr.Tab("Live Mode"):

        gr.Markdown ("## Live Mode Auditing LLMs")
        gr.Markdown("In Live Auditing Mode, you gain the ability to probe the LLM directly.")
        gr.Markdown("First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively") 
        with gr.Row():
            model_name_input = gr.Dropdown([("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),("Vicuna", "TheBloke/vicuna-33B-GGUF"),("Claude","TheBloke/claude2-alpaca-13B-GGUF"),("Alpaca","TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], label="Large Language Model")
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
        with gr.Row():
            generate_button = gr.Button("Generate", variant="primary", min_width=300)
        with gr.Column():
            cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
        
        generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])

        with gr.Row() as exec: 
            btnExec = gr.Button("Execute", variant="primary", min_width=200)


        with gr.Column() as texts:
            for i in range(10):
                text = gr.Textbox(label="_", visible=False)
                text_list.append(text)

        with gr.Column():
            html_result = gr.HTML("""<div style="color: red"></div>""")

        #btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=text_list)
        btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
        gr.HTML("""
        <div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: </div>
                """)

        clear = gr.ClearButton(link = "http://127.0.0.1:7865") 

    with gr.Tab("Batch Mode"):
        
        gr.Markdown("## Batch Mode Auditing LLMs")
        gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.")
        gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.")
        gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.")
            
        llm_dropdown = gr.Dropdown(choices=[
                ("Llama", "TheBloke/Llama-2-7B-Chat-GGML"), 
                ("Falcon", "TheBloke/Falcon-180B-Chat-GGUF"), 
                ("Zephyr", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), 
                ("Vicuna", "TheBloke/vicuna-33B-GGUF"), 
                ("Claude", "TheBloke/claude2-alpaca-13B-GGUF"), 
                ("Alpaca", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], 
                label="Large Language Model")
        file_upload = gr.File(label="Upload an Excel File with Questions", file_types=[".xlsx"])
        with gr.Row():
            relevance_slider = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True)
            diversity_slider = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True) 

            
        submit_button = gr.Button("Submit", variant="primary", min_width=200)
        output_textbox = gr.Textbox(label="Output")
        download_button = gr.File(label="Download Processed File")

        def on_submit(llm, file, relevance, diversity):
            result, output_file = process_inputs(llm, file, relevance, diversity)
            return result, output_file

        submit_button.click(fn=on_submit, inputs=[llm_dropdown, file_upload, relevance_slider, diversity_slider], outputs=[output_textbox, download_button])

# Launch the Gradio app
demo.launch()