File size: 14,253 Bytes
f7ecb69
77b9c6f
5922875
a4c75f1
466c900
42b28e5
a4c75f1
b2c2432
aa00158
e2f6264
a4c75f1
 
 
e2f6264
aa00158
b2c2432
aa00158
 
dad09f2
ef6d74f
f7ecb69
5922875
608a413
d90f64f
 
 
 
 
 
 
 
 
 
f7ecb69
d90f64f
 
f163cb3
f7ecb69
d90f64f
f7ecb69
d90f64f
f7ecb69
313e518
d90f64f
f7ecb69
f163cb3
313e518
f7ecb69
f163cb3
d90f64f
f7ecb69
 
 
d90f64f
 
 
 
 
 
 
 
 
ceda1ed
f7ecb69
d90f64f
f7ecb69
d90f64f
 
 
 
 
 
ceda1ed
d90f64f
 
ceda1ed
2508cf4
d90f64f
b7242c7
d90f64f
 
b7242c7
d90f64f
 
 
 
e273bef
d90f64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3a5974a
4ff0ae4
d90f64f
 
 
 
 
 
 
 
 
 
 
 
 
44f211e
d90f64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee827b
52b27c0
c75a9f8
097f802
427d9b2
c75a9f8
3685ccf
119da3b
 
 
3685ccf
119da3b
427d9b2
01d313d
3675f63
8e85ee2
 
 
6762f17
d90f64f
427d9b2
8e85ee2
 
 
 
 
 
6762f17
d90f64f
6762f17
 
d90f64f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8e85ee2
427d9b2
8e85ee2
6762f17
d90f64f
 
427d9b2
 
 
01d313d
427d9b2
52b27c0
3685ccf
44f211e
3685ccf
44f211e
f7ecb69
 
d90f64f
 
 
 
 
 
 
f7ecb69
 
 
 
5e953eb
d66b3e2
5e953eb
4b331a2
219bc9e
4b331a2
 
07f2e3e
d90f64f
5e953eb
 
 
07f2e3e
5e953eb
 
 
 
07f2e3e
 
 
 
5e953eb
 
 
 
07f2e3e
 
d90f64f
07f2e3e
 
d90f64f
07f2e3e
5e953eb
 
4b331a2
4c8b7ce
aa242c7
 
 
4c8b7ce
d90f64f
 
 
 
 
 
 
 
 
 
 
 
6e718fc
6762f17
688544c
 
6762f17
4c8b7ce
ddebcda
202c24f
 
3685ccf
d90f64f
 
 
 
8d7c25e
3107ee7
d90f64f
0ae6ca7
f7ecb69
1c13787
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, util
from sklearn.cluster import KMeans
import nltk
import pandas as pd
import smtplib
import os
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from nltk import tokenize
import numpy as np
import scipy.spatial
import csv


load_dotenv()

# Global array of different possible LLM selection options
LLM_OPTIONS = [
    ("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"),
    ("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"),
    ("Zephyr-7B", "zephyr-quiklang-3b-4k.Q4_K_M.gguf"),
    ("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"),
    ("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"),
    ("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")
]

def generate_prompts(user_input):
    print("User input here")
    print(user_input)
    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"Just list 5 distinct and separate yet relevant question prompts for {user_input} and don't put number before any of the prompts."
    )
    config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256}
    llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
                        config=config)
    hub_chain = LLMChain(prompt=prompt_template, llm=llm)
    input_data = {"Question": user_input}

    generated_prompts = hub_chain.run(input_data)  
    questions_list = generated_prompts.split('\n') 

    formatted_questions = "\n".join(f"Question: {question}" for question in questions_list if question.strip())
    questions_list = formatted_questions.split("Question:")[1:]
    return questions_list

def answer_question(prompt, model_name):
    print("inside answer question function")
    print("prompt")
    print(prompt)
    print("")
    print("model name")
    print(model_name)
    print("")

    prompt_template = PromptTemplate(
        input_variables=["Question"],
        template=f"Please provide a concise and relevant answer for {prompt} in three sentences or less and don't put Answer in front of what you return. You are a helpful and factual assistant, do not say thank you or you are happy to assist just answer the question."
    )
    config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256}
    llm = CTransformers(model=model_name,
                        config=config, 
                        threads=os.cpu_count())
    hub_chain = LLMChain(prompt=prompt_template, llm=llm)
    input_data = {"Answer the question": prompt}
    generated_answer = hub_chain.run(input_data)  
    print("generated answer")
    print(generated_answer)
    return generated_answer

def calculate_sentence_similarities(sentences_list):
    model = SentenceTransformer('all-MiniLM-L6-v2')
    embeddings_list = [model.encode(sentences) for sentences in sentences_list]
    similarity_matrices = []
    
    for i in range(len(embeddings_list)):
        for j in range(i + 1, len(embeddings_list)):
            similarity_matrix = util.pytorch_cos_sim(embeddings_list[i], embeddings_list[j]).numpy()
            similarity_matrices.append((i, j, similarity_matrix))
    
    return similarity_matrices

def highlight_similar_sentences(sentences_list, similarity_threshold):
    similarity_matrices = calculate_sentence_similarities(sentences_list)
    highlighted_sentences = [[] for _ in sentences_list]

    for (i, j, similarity_matrix) in similarity_matrices:
        for idx1 in range(similarity_matrix.shape[0]):
            for idx2 in range(similarity_matrix.shape[1]):
                similarity = similarity_matrix[idx1][idx2]
                print(f"Similarity between sentence {idx1} in paragraph {i} and sentence {idx2} in paragraph {j}: {similarity:.2f}")
                if similarity >= similarity_threshold:
                    print("Greater than sim!")
                    if (idx1, "powderblue", similarity) not in highlighted_sentences[i]:
                        highlighted_sentences[i].append((idx1, "powderblue", similarity))
                    if (idx2, "powderblue", similarity) not in highlighted_sentences[j]:
                        highlighted_sentences[j].append((idx2, "powderblue", similarity))

    for i, sentences in enumerate(sentences_list):
        highlighted = []
        for j, sentence in enumerate(sentences):
            color = "none"
            score = 0
            for idx, col, sim in highlighted_sentences[i]:
                if idx == j:
                    color = col
                    score = sim
                    break
            highlighted.append({"text": sentence, "background-color": color, "score": score})
        highlighted_sentences[i] = highlighted

    print(highlighted_sentences)
    return highlighted_sentences


def setTextVisibility(cbg, model_name_input):
    selected_prompts = cbg
    answers = [answer_question(prompt, model_name_input) for prompt in selected_prompts]

    sentences_list = [tokenize.sent_tokenize(answer) for answer in answers]
    highlighted_sentences_list = highlight_similar_sentences(sentences_list, 0.5)

    result = []
    for idx, (prompt, highlighted_sentences) in enumerate(zip(selected_prompts, highlighted_sentences_list)):
        result.append(f"<p><strong>Prompt: {prompt}</strong></p>")
        for sentence_info in highlighted_sentences:
            color = sentence_info.get('background-color', 'none')  # Read the 'color' parameter
            result.append(f"<p style='background-color: {color};'><strong>{sentence_info['text']}</strong></p>")
    
    blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list]
    blue_scores = [score for scores in blue_scores_list for score in scores]

    if blue_scores:
        overall_score = round(np.mean(blue_scores) * 100)
    else:
        overall_score = 0

    final_html = f"""<div>{''.join(result)}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {overall_score}</div></div>"""

    print("")
    print("final html")
    print(final_html)
    return final_html



def process_inputs(file, relevance, diversity, model_name):
    # Check if file is uploaded
    if file is not None:
        # Read questions from the uploaded Excel file
        try:
            df = pd.read_excel(file, engine='openpyxl')
        except Exception as e:
            return f"Failed to read Excel file: {e}", None

        # Ensure that there is only one column in the file
        if df.shape[1] != 1:
            return "The uploaded file must contain only one column of questions.", None

        # Extract the first column
        questions_list = df.iloc[:, 0]

        # Initialize lists to store the expanded data
        expanded_questions = []
        expanded_prompts = []
        expanded_answers = []
        semantic_similarities = []

        # Generate prompts for each question and expand the data
        for question in questions_list:
            prompts = generate_prompts(question)
            expanded_questions.extend([question] * len(prompts))
            expanded_prompts.extend(prompts)

            # Generate answers for each prompt
            answers = [answer_question(prompt, model_name) for prompt in prompts]
            expanded_answers.extend(answers)

            # Calculate semantic similarity score for each answer
            similarity_scores = []
            for answer in answers:
                sentences_list = tokenize.sent_tokenize(answer)
                highlighted_sentences_list = highlight_similar_sentences([sentences_list], 0.5)
                print("highlighted sentences list")
                print(highlighted_sentences_list)

                blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list]
                blue_scores = [score for scores in blue_scores_list for score in scores]

                if blue_scores:
                    overall_score = round(np.mean(blue_scores) * 100)
                else:
                    overall_score = 0

                similarity_scores.append(overall_score)
                print("overall score")
                print(overall_score)

            # Calculate mean similarity score for each question
            question_similarity_score = np.mean(similarity_scores)
            print("question sim score")
            print(question_similarity_score)

            # Extend the list with the same score for all answers to this question
            semantic_similarities.extend([question_similarity_score] * len(prompts))

        # Combine the expanded data into a DataFrame
        output_df = pd.DataFrame({
            'Questions': expanded_questions,
            'Generated Prompts': expanded_prompts,
            'Answers': expanded_answers,
            'Semantic Similarity': semantic_similarities
        })

        # Save the DataFrame to a new Excel file
        output_file = "processed_questions.xlsx"
        output_df.to_excel(output_file, index=False)
    else:
        return "No questions provided.", None

    return "Processing complete. Download the file below.", output_file

text_list = []

def get_model_name(model_label):
    # Retrieve the model name based on the selected label
    for label, name in LLM_OPTIONS:
        if label == model_label:
            return name
    return None

def updateChoices(prompt):
    newChoices = generate_prompts(prompt)
    return gr.CheckboxGroup(choices=newChoices)

with gr.Blocks(theme=gr.themes.Soft()) as demo:
    
    with gr.Tab("Live Mode"):

        gr.Markdown ("## Live Mode Auditing LLMs")
        gr.Markdown("In Live Auditing Mode, you gain the ability to probe the LLM directly.")
        gr.Markdown("First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively") 
        with gr.Row():
            model_name_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model")
        with gr.Row():
            prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
        with gr.Row():
            generate_button = gr.Button("Generate", variant="primary", min_width=300)
        with gr.Column():
            cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
        
        generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])

        with gr.Row() as exec: 
            btnExec = gr.Button("Execute", variant="primary", min_width=200)

        with gr.Column() as texts:
            for i in range(10):
                text = gr.Textbox(label="_", visible=False)
                text_list.append(text)

        with gr.Column():
            html_result = gr.HTML("""<div style="background-color: powderblue"></div>""")

        btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
        clear = gr.ClearButton(link="http://127.0.0.1:7860")


    with gr.Tab("Batch Mode"):
        
        gr.Markdown("## Batch Mode Auditing LLMs")
        gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.")
        gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.")
        gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.")
            
        # llm_dropdown = gr.Dropdown(choices=[
        #         ("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"), 
        #         ("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"), 
        #         ("Zephyr-7B", "TheBloke/zephyr-quiklang-3b-4K-GGUF"), 
        #         ("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"), 
        #         ("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"), 
        #         ("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")], 
        #         label="Large Language Model")

        with gr.Row():
            model_name_batch_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model")

        file_upload = gr.File(label="Upload an Excel File with Questions", file_types=[".xlsx"])
        with gr.Row():
            relevance_slider = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True)
            diversity_slider = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True) 

            
        submit_button = gr.Button("Submit", variant="primary", min_width=200)
        output_textbox = gr.Textbox(label="Output")
        download_button = gr.File(label="Download Processed File")

        def on_submit(file, relevance, diversity, model_name_batch_input):
            print("in on submit")
            print(model_name_batch_input)
            result, output_file = process_inputs(file, relevance, diversity, model_name_batch_input)
            return result, output_file

        submit_button.click(fn=on_submit, inputs=[file_upload, relevance_slider, diversity_slider, model_name_batch_input], outputs=[output_textbox, download_button])

# Launch the Gradio app
demo.launch()