Spaces:
Runtime error
Runtime error
File size: 14,253 Bytes
f7ecb69 77b9c6f 5922875 a4c75f1 466c900 42b28e5 a4c75f1 b2c2432 aa00158 e2f6264 a4c75f1 e2f6264 aa00158 b2c2432 aa00158 dad09f2 ef6d74f f7ecb69 5922875 608a413 d90f64f f7ecb69 d90f64f f163cb3 f7ecb69 d90f64f f7ecb69 d90f64f f7ecb69 313e518 d90f64f f7ecb69 f163cb3 313e518 f7ecb69 f163cb3 d90f64f f7ecb69 d90f64f ceda1ed f7ecb69 d90f64f f7ecb69 d90f64f ceda1ed d90f64f ceda1ed 2508cf4 d90f64f b7242c7 d90f64f b7242c7 d90f64f e273bef d90f64f 3a5974a 4ff0ae4 d90f64f 44f211e d90f64f 1ee827b 52b27c0 c75a9f8 097f802 427d9b2 c75a9f8 3685ccf 119da3b 3685ccf 119da3b 427d9b2 01d313d 3675f63 8e85ee2 6762f17 d90f64f 427d9b2 8e85ee2 6762f17 d90f64f 6762f17 d90f64f 8e85ee2 427d9b2 8e85ee2 6762f17 d90f64f 427d9b2 01d313d 427d9b2 52b27c0 3685ccf 44f211e 3685ccf 44f211e f7ecb69 d90f64f f7ecb69 5e953eb d66b3e2 5e953eb 4b331a2 219bc9e 4b331a2 07f2e3e d90f64f 5e953eb 07f2e3e 5e953eb 07f2e3e 5e953eb 07f2e3e d90f64f 07f2e3e d90f64f 07f2e3e 5e953eb 4b331a2 4c8b7ce aa242c7 4c8b7ce d90f64f 6e718fc 6762f17 688544c 6762f17 4c8b7ce ddebcda 202c24f 3685ccf d90f64f 8d7c25e 3107ee7 d90f64f 0ae6ca7 f7ecb69 1c13787 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import gradio as gr
import pandas as pd
from dotenv import load_dotenv
from langchain_community.llms import CTransformers, HuggingFacePipeline, HuggingFaceHub
from langchain_core.prompts import PromptTemplate
from langchain.chains import LLMChain
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
from sentence_transformers import SentenceTransformer, util
from sklearn.cluster import KMeans
import nltk
import pandas as pd
import smtplib
import os
nltk.download('punkt')
from nltk.tokenize import word_tokenize
from nltk import tokenize
import numpy as np
import scipy.spatial
import csv
load_dotenv()
# Global array of different possible LLM selection options
LLM_OPTIONS = [
("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"),
("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"),
("Zephyr-7B", "zephyr-quiklang-3b-4k.Q4_K_M.gguf"),
("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"),
("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"),
("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")
]
def generate_prompts(user_input):
print("User input here")
print(user_input)
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"Just list 5 distinct and separate yet relevant question prompts for {user_input} and don't put number before any of the prompts."
)
config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256}
llm = CTransformers(model="TheBloke/Mistral-7B-Instruct-v0.1-GGUF",
config=config)
hub_chain = LLMChain(prompt=prompt_template, llm=llm)
input_data = {"Question": user_input}
generated_prompts = hub_chain.run(input_data)
questions_list = generated_prompts.split('\n')
formatted_questions = "\n".join(f"Question: {question}" for question in questions_list if question.strip())
questions_list = formatted_questions.split("Question:")[1:]
return questions_list
def answer_question(prompt, model_name):
print("inside answer question function")
print("prompt")
print(prompt)
print("")
print("model name")
print(model_name)
print("")
prompt_template = PromptTemplate(
input_variables=["Question"],
template=f"Please provide a concise and relevant answer for {prompt} in three sentences or less and don't put Answer in front of what you return. You are a helpful and factual assistant, do not say thank you or you are happy to assist just answer the question."
)
config = {'max_new_tokens': 256, 'temperature': 0.7, 'context_length': 256}
llm = CTransformers(model=model_name,
config=config,
threads=os.cpu_count())
hub_chain = LLMChain(prompt=prompt_template, llm=llm)
input_data = {"Answer the question": prompt}
generated_answer = hub_chain.run(input_data)
print("generated answer")
print(generated_answer)
return generated_answer
def calculate_sentence_similarities(sentences_list):
model = SentenceTransformer('all-MiniLM-L6-v2')
embeddings_list = [model.encode(sentences) for sentences in sentences_list]
similarity_matrices = []
for i in range(len(embeddings_list)):
for j in range(i + 1, len(embeddings_list)):
similarity_matrix = util.pytorch_cos_sim(embeddings_list[i], embeddings_list[j]).numpy()
similarity_matrices.append((i, j, similarity_matrix))
return similarity_matrices
def highlight_similar_sentences(sentences_list, similarity_threshold):
similarity_matrices = calculate_sentence_similarities(sentences_list)
highlighted_sentences = [[] for _ in sentences_list]
for (i, j, similarity_matrix) in similarity_matrices:
for idx1 in range(similarity_matrix.shape[0]):
for idx2 in range(similarity_matrix.shape[1]):
similarity = similarity_matrix[idx1][idx2]
print(f"Similarity between sentence {idx1} in paragraph {i} and sentence {idx2} in paragraph {j}: {similarity:.2f}")
if similarity >= similarity_threshold:
print("Greater than sim!")
if (idx1, "powderblue", similarity) not in highlighted_sentences[i]:
highlighted_sentences[i].append((idx1, "powderblue", similarity))
if (idx2, "powderblue", similarity) not in highlighted_sentences[j]:
highlighted_sentences[j].append((idx2, "powderblue", similarity))
for i, sentences in enumerate(sentences_list):
highlighted = []
for j, sentence in enumerate(sentences):
color = "none"
score = 0
for idx, col, sim in highlighted_sentences[i]:
if idx == j:
color = col
score = sim
break
highlighted.append({"text": sentence, "background-color": color, "score": score})
highlighted_sentences[i] = highlighted
print(highlighted_sentences)
return highlighted_sentences
def setTextVisibility(cbg, model_name_input):
selected_prompts = cbg
answers = [answer_question(prompt, model_name_input) for prompt in selected_prompts]
sentences_list = [tokenize.sent_tokenize(answer) for answer in answers]
highlighted_sentences_list = highlight_similar_sentences(sentences_list, 0.5)
result = []
for idx, (prompt, highlighted_sentences) in enumerate(zip(selected_prompts, highlighted_sentences_list)):
result.append(f"<p><strong>Prompt: {prompt}</strong></p>")
for sentence_info in highlighted_sentences:
color = sentence_info.get('background-color', 'none') # Read the 'color' parameter
result.append(f"<p style='background-color: {color};'><strong>{sentence_info['text']}</strong></p>")
blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list]
blue_scores = [score for scores in blue_scores_list for score in scores]
if blue_scores:
overall_score = round(np.mean(blue_scores) * 100)
else:
overall_score = 0
final_html = f"""<div>{''.join(result)}<div style="text-align: center; font-size: 24px; font-weight: bold;">Similarity Score: {overall_score}</div></div>"""
print("")
print("final html")
print(final_html)
return final_html
def process_inputs(file, relevance, diversity, model_name):
# Check if file is uploaded
if file is not None:
# Read questions from the uploaded Excel file
try:
df = pd.read_excel(file, engine='openpyxl')
except Exception as e:
return f"Failed to read Excel file: {e}", None
# Ensure that there is only one column in the file
if df.shape[1] != 1:
return "The uploaded file must contain only one column of questions.", None
# Extract the first column
questions_list = df.iloc[:, 0]
# Initialize lists to store the expanded data
expanded_questions = []
expanded_prompts = []
expanded_answers = []
semantic_similarities = []
# Generate prompts for each question and expand the data
for question in questions_list:
prompts = generate_prompts(question)
expanded_questions.extend([question] * len(prompts))
expanded_prompts.extend(prompts)
# Generate answers for each prompt
answers = [answer_question(prompt, model_name) for prompt in prompts]
expanded_answers.extend(answers)
# Calculate semantic similarity score for each answer
similarity_scores = []
for answer in answers:
sentences_list = tokenize.sent_tokenize(answer)
highlighted_sentences_list = highlight_similar_sentences([sentences_list], 0.5)
print("highlighted sentences list")
print(highlighted_sentences_list)
blue_scores_list = [[info['score'] for info in highlighted_sentences if info['background-color'] == 'powderblue'] for highlighted_sentences in highlighted_sentences_list]
blue_scores = [score for scores in blue_scores_list for score in scores]
if blue_scores:
overall_score = round(np.mean(blue_scores) * 100)
else:
overall_score = 0
similarity_scores.append(overall_score)
print("overall score")
print(overall_score)
# Calculate mean similarity score for each question
question_similarity_score = np.mean(similarity_scores)
print("question sim score")
print(question_similarity_score)
# Extend the list with the same score for all answers to this question
semantic_similarities.extend([question_similarity_score] * len(prompts))
# Combine the expanded data into a DataFrame
output_df = pd.DataFrame({
'Questions': expanded_questions,
'Generated Prompts': expanded_prompts,
'Answers': expanded_answers,
'Semantic Similarity': semantic_similarities
})
# Save the DataFrame to a new Excel file
output_file = "processed_questions.xlsx"
output_df.to_excel(output_file, index=False)
else:
return "No questions provided.", None
return "Processing complete. Download the file below.", output_file
text_list = []
def get_model_name(model_label):
# Retrieve the model name based on the selected label
for label, name in LLM_OPTIONS:
if label == model_label:
return name
return None
def updateChoices(prompt):
newChoices = generate_prompts(prompt)
return gr.CheckboxGroup(choices=newChoices)
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Tab("Live Mode"):
gr.Markdown ("## Live Mode Auditing LLMs")
gr.Markdown("In Live Auditing Mode, you gain the ability to probe the LLM directly.")
gr.Markdown("First, select the LLM you wish to audit. Then, enter your question. The AuditLLM tool will generate five relevant and diverse prompts based on your question. You can now select these prompts for auditing the LLMs. Examine the similarity scores in the answers generated from these prompts to assess the LLM's performance effectively")
with gr.Row():
model_name_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model")
with gr.Row():
prompt_input = gr.Textbox(label="Enter your question", placeholder="Enter Your Question")
with gr.Row():
generate_button = gr.Button("Generate", variant="primary", min_width=300)
with gr.Column():
cbg = gr.CheckboxGroup(choices=[], label="List of the prompts", interactive=True)
generate_button.click(updateChoices, inputs=[prompt_input], outputs=[cbg])
with gr.Row() as exec:
btnExec = gr.Button("Execute", variant="primary", min_width=200)
with gr.Column() as texts:
for i in range(10):
text = gr.Textbox(label="_", visible=False)
text_list.append(text)
with gr.Column():
html_result = gr.HTML("""<div style="background-color: powderblue"></div>""")
btnExec.click(setTextVisibility, inputs=[cbg, model_name_input], outputs=html_result)
clear = gr.ClearButton(link="http://127.0.0.1:7860")
with gr.Tab("Batch Mode"):
gr.Markdown("## Batch Mode Auditing LLMs")
gr.Markdown("In batch auditing mode, you have the capability to probe the LLM. To begin, you must first select the LLM you wish to audit and then input the questions you intend to explore. For each question submitted, the model will generate five prompts, each accompanied by its respective answers.")
gr.Markdown("To tailor the generation of these five prompts from your original question, you can adjust the relevance and diversity scores. The relevance score determines how closely the generated prompts should align with the original question, while the diversity score dictates the variance among the prompts themselves.")
gr.Markdown("Upon completion, please provide your email address. We will compile and send the answers to you promptly.")
# llm_dropdown = gr.Dropdown(choices=[
# ("Llama-2-7B", "TheBloke/Llama-2-7B-Chat-GGML"),
# ("Falcon-180B", "TheBloke/Falcon-180B-Chat-GGUF"),
# ("Zephyr-7B", "TheBloke/zephyr-quiklang-3b-4K-GGUF"),
# ("Vicuna-33B", "TheBloke/vicuna-33B-GGUF"),
# ("Claude2", "TheBloke/claude2-alpaca-13B-GGUF"),
# ("Alpaca-7B", "TheBloke/LeoScorpius-GreenNode-Alpaca-7B-v1-GGUF")],
# label="Large Language Model")
with gr.Row():
model_name_batch_input = gr.Dropdown(choices=LLM_OPTIONS, label="Large Language Model")
file_upload = gr.File(label="Upload an Excel File with Questions", file_types=[".xlsx"])
with gr.Row():
relevance_slider = gr.Slider(1, 100, value=70, label="Relevance", info="Choose between 0 and 100", interactive=True)
diversity_slider = gr.Slider(1, 100, value=25, label="Diversity", info="Choose between 0 and 100", interactive=True)
submit_button = gr.Button("Submit", variant="primary", min_width=200)
output_textbox = gr.Textbox(label="Output")
download_button = gr.File(label="Download Processed File")
def on_submit(file, relevance, diversity, model_name_batch_input):
print("in on submit")
print(model_name_batch_input)
result, output_file = process_inputs(file, relevance, diversity, model_name_batch_input)
return result, output_file
submit_button.click(fn=on_submit, inputs=[file_upload, relevance_slider, diversity_slider, model_name_batch_input], outputs=[output_textbox, download_button])
# Launch the Gradio app
demo.launch() |