AmmarFahmy
adding all files
105b369
import json
from textwrap import dedent
from typing import Optional, List, Iterator, Dict, Any
from phi.llm.base import LLM
from phi.llm.message import Message
from phi.tools.function import FunctionCall
from phi.utils.log import logger
from phi.utils.timer import Timer
from phi.utils.tools import (
get_function_call_for_tool_call,
extract_tool_from_xml,
remove_function_calls_from_string,
)
try:
from anthropic import Anthropic as AnthropicClient
from anthropic.types import Message as AnthropicMessage
except ImportError:
logger.error("`anthropic` not installed")
raise
class Claude(LLM):
name: str = "claude"
model: str = "claude-3-opus-20240229"
# -*- Request parameters
max_tokens: Optional[int] = 1024
temperature: Optional[float] = None
stop_sequences: Optional[List[str]] = None
top_p: Optional[float] = None
top_k: Optional[int] = None
request_params: Optional[Dict[str, Any]] = None
# -*- Client parameters
api_key: Optional[str] = None
client_params: Optional[Dict[str, Any]] = None
# -*- Provide the client manually
anthropic_client: Optional[AnthropicClient] = None
@property
def client(self) -> AnthropicClient:
if self.anthropic_client:
return self.anthropic_client
_client_params: Dict[str, Any] = {}
if self.api_key:
_client_params["api_key"] = self.api_key
return AnthropicClient(**_client_params)
@property
def api_kwargs(self) -> Dict[str, Any]:
_request_params: Dict[str, Any] = {}
if self.max_tokens:
_request_params["max_tokens"] = self.max_tokens
if self.temperature:
_request_params["temperature"] = self.temperature
if self.stop_sequences:
_request_params["stop_sequences"] = self.stop_sequences
if self.tools is not None:
if _request_params.get("stop_sequences") is None:
_request_params["stop_sequences"] = ["</function_calls>"]
elif "</function_calls>" not in _request_params["stop_sequences"]:
_request_params["stop_sequences"].append("</function_calls>")
if self.top_p:
_request_params["top_p"] = self.top_p
if self.top_k:
_request_params["top_k"] = self.top_k
if self.request_params:
_request_params.update(self.request_params)
return _request_params
def invoke(self, messages: List[Message]) -> AnthropicMessage:
api_kwargs: Dict[str, Any] = self.api_kwargs
api_messages: List[dict] = []
for m in messages:
if m.role == "system":
api_kwargs["system"] = m.content
else:
api_messages.append({"role": m.role, "content": m.content or ""})
return self.client.messages.create(
model=self.model,
messages=api_messages,
**api_kwargs,
)
def invoke_stream(self, messages: List[Message]) -> Any:
api_kwargs: Dict[str, Any] = self.api_kwargs
api_messages: List[dict] = []
for m in messages:
if m.role == "system":
api_kwargs["system"] = m.content
else:
api_messages.append({"role": m.role, "content": m.content or ""})
return self.client.messages.stream(
model=self.model,
messages=api_messages,
**api_kwargs,
)
def response(self, messages: List[Message]) -> str:
logger.debug("---------- Claude Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
response_timer = Timer()
response_timer.start()
response: AnthropicMessage = self.invoke(messages=messages)
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# -*- Parse response
response_content = response.content[0].text
# -*- Create assistant message
assistant_message = Message(
role=response.role or "assistant",
content=response_content,
)
# Check if the response contains a tool call
try:
if response_content is not None:
if "<function_calls>" in response_content:
# List of tool calls added to the assistant message
tool_calls: List[Dict[str, Any]] = []
# Add function call closing tag to the assistant message
# This is because we add </function_calls> as a stop sequence
assistant_message.content += "</function_calls>" # type: ignore
# If the assistant is calling multiple functions, the response will contain multiple <invoke> tags
response_content = response_content.split("</invoke>")
for tool_call_response in response_content:
if "<invoke>" in tool_call_response:
# Extract tool call string from response
tool_call_dict = extract_tool_from_xml(tool_call_response)
tool_call_name = tool_call_dict.get("tool_name")
tool_call_args = tool_call_dict.get("parameters")
function_def = {"name": tool_call_name}
if tool_call_args is not None:
function_def["arguments"] = json.dumps(tool_call_args)
tool_calls.append(
{
"type": "function",
"function": function_def,
}
)
logger.debug(f"Tool Calls: {tool_calls}")
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
except Exception as e:
logger.warning(e)
pass
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function call
if assistant_message.tool_calls is not None and self.run_tools:
# Remove the tool call from the response content
final_response = remove_function_calls_from_string(assistant_message.content) # type: ignore
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
final_response += f" - Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
final_response += "Running:"
for _f in function_calls_to_run:
final_response += f"\n - {_f.get_call_str()}"
final_response += "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
if len(function_call_results) > 0:
fc_responses = "<function_results>"
for _fc_message in function_call_results:
fc_responses += "<result>"
fc_responses += "<tool_name>" + _fc_message.tool_call_name + "</tool_name>" # type: ignore
fc_responses += "<stdout>" + _fc_message.content + "</stdout>" # type: ignore
fc_responses += "</result>"
fc_responses += "</function_results>"
messages.append(Message(role="user", content=fc_responses))
# -*- Yield new response using results of tool calls
final_response += self.response(messages=messages)
return final_response
logger.debug("---------- Claude Response End ----------")
# -*- Return content if no function calls are present
if assistant_message.content is not None:
return assistant_message.get_content_string()
return "Something went wrong, please try again."
def response_stream(self, messages: List[Message]) -> Iterator[str]:
logger.debug("---------- Claude Response Start ----------")
# -*- Log messages for debugging
for m in messages:
m.log()
assistant_message_content = ""
tool_calls_counter = 0
response_is_tool_call = False
is_closing_tool_call_tag = False
response_timer = Timer()
response_timer.start()
response = self.invoke_stream(messages=messages)
with response as stream:
for stream_delta in stream.text_stream:
# logger.debug(f"Stream Delta: {stream_delta}")
# Add response content to assistant message
if stream_delta is not None:
assistant_message_content += stream_delta
# Detect if response is a tool call
if not response_is_tool_call and ("<function" in stream_delta or "<invoke" in stream_delta):
response_is_tool_call = True
# logger.debug(f"Response is tool call: {response_is_tool_call}")
# If response is a tool call, count the number of tool calls
if response_is_tool_call:
# If the response is an opening tool call tag, increment the tool call counter
if "<invoke" in stream_delta:
tool_calls_counter += 1
# If the response is a closing tool call tag, decrement the tool call counter
if assistant_message_content.strip().endswith("</invoke>"):
tool_calls_counter -= 1
# If the response is a closing tool call tag and the tool call counter is 0,
# tool call response is complete
if tool_calls_counter == 0 and stream_delta.strip().endswith(">"):
response_is_tool_call = False
# logger.debug(f"Response is tool call: {response_is_tool_call}")
is_closing_tool_call_tag = True
# -*- Yield content if not a tool call and content is not None
if not response_is_tool_call and stream_delta is not None:
if is_closing_tool_call_tag and stream_delta.strip().endswith(">"):
is_closing_tool_call_tag = False
continue
yield stream_delta
response_timer.stop()
logger.debug(f"Time to generate response: {response_timer.elapsed:.4f}s")
# Add function call closing tag to the assistant message
if assistant_message_content.count("<function_calls>") == 1:
assistant_message_content += "</function_calls>"
# -*- Create assistant message
assistant_message = Message(
role="assistant",
content=assistant_message_content,
)
# Check if the response contains tool calls
try:
if "<invoke>" in assistant_message_content and "</invoke>" in assistant_message_content:
# List of tool calls added to the assistant message
tool_calls: List[Dict[str, Any]] = []
# Break the response into tool calls
tool_call_responses = assistant_message_content.split("</invoke>")
for tool_call_response in tool_call_responses:
# Add back the closing tag if this is not the last tool call
if tool_call_response != tool_call_responses[-1]:
tool_call_response += "</invoke>"
if "<invoke>" in tool_call_response and "</invoke>" in tool_call_response:
# Extract tool call string from response
tool_call_dict = extract_tool_from_xml(tool_call_response)
tool_call_name = tool_call_dict.get("tool_name")
tool_call_args = tool_call_dict.get("parameters")
function_def = {"name": tool_call_name}
if tool_call_args is not None:
function_def["arguments"] = json.dumps(tool_call_args)
tool_calls.append(
{
"type": "function",
"function": function_def,
}
)
logger.debug(f"Tool Calls: {tool_calls}")
# If tool call parsing is successful, add tool calls to the assistant message
if len(tool_calls) > 0:
assistant_message.tool_calls = tool_calls
except Exception:
logger.warning(f"Could not parse tool calls from response: {assistant_message_content}")
pass
# -*- Update usage metrics
# Add response time to metrics
assistant_message.metrics["time"] = response_timer.elapsed
if "response_times" not in self.metrics:
self.metrics["response_times"] = []
self.metrics["response_times"].append(response_timer.elapsed)
# -*- Add assistant message to messages
messages.append(assistant_message)
assistant_message.log()
# -*- Parse and run function call
if assistant_message.tool_calls is not None and self.run_tools:
function_calls_to_run: List[FunctionCall] = []
for tool_call in assistant_message.tool_calls:
_function_call = get_function_call_for_tool_call(tool_call, self.functions)
if _function_call is None:
messages.append(Message(role="user", content="Could not find function to call."))
continue
if _function_call.error is not None:
messages.append(Message(role="user", content=_function_call.error))
continue
function_calls_to_run.append(_function_call)
if self.show_tool_calls:
if len(function_calls_to_run) == 1:
yield f"- Running: {function_calls_to_run[0].get_call_str()}\n\n"
elif len(function_calls_to_run) > 1:
yield "Running:"
for _f in function_calls_to_run:
yield f"\n - {_f.get_call_str()}"
yield "\n\n"
function_call_results = self.run_function_calls(function_calls_to_run, role="user")
# Add results of the function calls to the messages
if len(function_call_results) > 0:
fc_responses = "<function_results>"
for _fc_message in function_call_results:
fc_responses += "<result>"
fc_responses += "<tool_name>" + _fc_message.tool_call_name + "</tool_name>" # type: ignore
fc_responses += "<stdout>" + _fc_message.content + "</stdout>" # type: ignore
fc_responses += "</result>"
fc_responses += "</function_results>"
messages.append(Message(role="user", content=fc_responses))
# -*- Yield new response using results of tool calls
yield from self.response_stream(messages=messages)
logger.debug("---------- Claude Response End ----------")
def get_tool_call_prompt(self) -> Optional[str]:
if self.functions is not None and len(self.functions) > 0:
tool_call_prompt = dedent(
"""\
In this environment you have access to a set of tools you can use to answer the user's question.
You may call them like this:
<function_calls>
<invoke>
<tool_name>$TOOL_NAME</tool_name>
<parameters>
<$PARAMETER_NAME>$PARAMETER_VALUE</$PARAMETER_NAME>
...
</parameters>
</invoke>
</function_calls>
"""
)
tool_call_prompt += "\nHere are the tools available:"
tool_call_prompt += "\n<tools>"
for _f_name, _function in self.functions.items():
_function_def = _function.get_definition_for_prompt_dict()
if _function_def:
tool_call_prompt += "\n<tool_description>"
tool_call_prompt += f"\n<tool_name>{_function_def.get('name')}</tool_name>"
tool_call_prompt += f"\n<description>{_function_def.get('description')}</description>"
arguments = _function_def.get("arguments")
if arguments:
tool_call_prompt += "\n<parameters>"
for arg in arguments:
tool_call_prompt += "\n<parameter>"
tool_call_prompt += f"\n<name>{arg}</name>"
if isinstance(arguments.get(arg).get("type"), str):
tool_call_prompt += f"\n<type>{arguments.get(arg).get('type')}</type>"
else:
tool_call_prompt += f"\n<type>{arguments.get(arg).get('type')[0]}</type>"
tool_call_prompt += "\n</parameter>"
tool_call_prompt += "\n</parameters>"
tool_call_prompt += "\n</tool_description>"
tool_call_prompt += "\n</tools>"
return tool_call_prompt
return None
def get_system_prompt_from_llm(self) -> Optional[str]:
return self.get_tool_call_prompt()