File size: 11,839 Bytes
bd6726a
 
 
901ea42
 
 
bd6726a
ca3609f
 
bd6726a
901ea42
 
ca3609f
 
bd6726a
901ea42
9724c61
901ea42
 
 
 
9724c61
 
5350ba4
 
901ea42
ca3609f
 
 
901ea42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3609f
 
 
 
 
 
 
 
 
 
bd6726a
9724c61
 
ca3609f
086b1c4
ca3609f
 
 
bd6726a
901ea42
9724c61
 
 
 
 
 
901ea42
9724c61
 
bd6726a
9724c61
7f6d4e3
 
 
 
 
 
9724c61
 
 
 
 
 
 
901ea42
bd6726a
9724c61
 
 
 
 
901ea42
9724c61
 
bd6726a
 
901ea42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9724c61
bd6726a
 
 
 
 
 
 
 
 
0eb155c
901ea42
 
9724c61
901ea42
 
ca3609f
901ea42
 
ca3609f
9724c61
 
 
 
901ea42
 
ca3609f
 
 
901ea42
 
 
 
 
 
 
ca3609f
901ea42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca3609f
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from ultralytics import YOLO
import gradio as gr
import torch
from tools import fast_process, format_results, box_prompt, point_prompt
from PIL import ImageDraw
import numpy as np

# Load the pre-trained model
model = YOLO('checkpoints/FastSAM.pt')

device = 'cuda' if torch.cuda.is_available() else 'cpu'

# Description
title = "<center><strong><font size='8'>🏃 Fast Segment Anything 🤗</font></strong></center>"

news = """ # 📖 News

        🔥 2023/06/24: Add the 'Advanced options" in Everything mode to get a more detailed adjustment.
        
        🔥 2023/06/26: Support the points mode. (Better and faster interaction will come soon!)
        
        """

         

description_e = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
                
                🎯 Upload an Image, segment it with Fast Segment Anything (Everything mode). The other modes will come soon.
                
                ⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
                
                🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
                
                📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
                
                😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
                
                🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
                
              """

description_p = """This is a demo on Github project 🏃 [Fast Segment Anything Model](https://github.com/CASIA-IVA-Lab/FastSAM).
                
                🎯 Upload an Image, add points and segment it with Fast Segment Anything (Points mode).
                
                ⌛️ It takes about 6~ seconds to generate segment results. The concurrency_count of queue is 1, please wait for a moment when it is crowded.
                
                🚀 To get faster results, you can use a smaller input size and leave high_visual_quality unchecked.
                
                📣 You can also obtain the segmentation results of any Image through this Colab: [![Open in Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1oX14f6IneGGw612WgVlAiy91UHwFAvr9?usp=sharing)
                
                😚 A huge thanks goes out to the @HuggingFace Team for supporting us with GPU grant.
                
                🏠 Check out our [Model Card 🏃](https://huggingface.co/An-619/FastSAM)
                
              """

examples = [["assets/sa_8776.jpg"], ["assets/sa_414.jpg"], ["assets/sa_1309.jpg"], ["assets/sa_11025.jpg"],
            ["assets/sa_561.jpg"], ["assets/sa_192.jpg"], ["assets/sa_10039.jpg"], ["assets/sa_862.jpg"]]

default_example = examples[0]

css = "h1 { text-align: center } .about { text-align: justify; padding-left: 10%; padding-right: 10%; }"


def segment_everything(
    input,
    input_size=1024, 
    iou_threshold=0.7,
    conf_threshold=0.25,
    better_quality=False,
    withContours=True,
    mask_random_color=True,
    use_retina=True,
    ):
    input_size = int(input_size)  # 确保 imgsz 是整数

    # Thanks for the suggestion by hysts in HuggingFace.
    w, h = input.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    input = input.resize((new_w, new_h))

    results = model(input,
                    device=device,
                    retina_masks=True,
                    iou=iou_threshold,
                    conf=conf_threshold,
                    imgsz=input_size,)
    
    fig = fast_process(annotations=results[0].masks.data,
                        image=input,
                        device=device,
                        scale=(1024 // input_size),
                        better_quality=better_quality,
                        mask_random_color=mask_random_color,
                        bbox=None,
                        use_retina=use_retina,
                        withContours=withContours,)
    return fig

def segment_with_points(
    input,
    input_size=1024, 
    iou_threshold=0.7,
    conf_threshold=0.25,
    better_quality=False,
    withContours=True,
    mask_random_color=True,
    use_retina=True,
    ):    
    global global_points
    global global_point_label
    
    input_size = int(input_size)  # 确保 imgsz 是整数
    # Thanks for the suggestion by hysts in HuggingFace.
    w, h = input.size
    scale = input_size / max(w, h)
    new_w = int(w * scale)
    new_h = int(h * scale)
    input = input.resize((new_w, new_h))
    
    scaled_points = [[int(x * scale) for x in point] for point in global_points]

    results = model(input,
                    device=device,
                    retina_masks=True,
                    iou=iou_threshold,
                    conf=conf_threshold,
                    imgsz=input_size,)
    
    results = format_results(results[0], 0)
    
    annotations, _ = point_prompt(results, scaled_points, global_point_label, new_h, new_w)
    annotations = np.array([annotations])
        
    fig = fast_process(annotations=annotations,
                        image=input,
                        device=device,
                        scale=(1024 // input_size),
                        better_quality=better_quality,
                        mask_random_color=mask_random_color,
                        bbox=None,
                        use_retina=use_retina,
                        withContours=withContours,)
    global_points = []
    global_point_label = []
    return fig, None

def get_points_with_draw(image, label, evt: gr.SelectData):
    x, y = evt.index[0], evt.index[1]
    point_radius, point_color = 15, (255, 255, 0) if label == 'Add Mask' else (255, 0, 255)
    global global_points
    global global_point_label
    print((x, y))
    global_points.append([x, y])
    global_point_label.append(1 if label == 'Add Mask' else 0)
    
    # 创建一个可以在图像上绘图的对象
    draw = ImageDraw.Draw(image)
    draw.ellipse([(x - point_radius, y - point_radius), (x + point_radius, y + point_radius)], fill=point_color)
    return image
    

# input_size=1024
# high_quality_visual=True
# inp = 'assets/sa_192.jpg'
# input = Image.open(inp)
# device = 'cuda' if torch.cuda.is_available() else 'cpu'
# input_size = int(input_size)  # 确保 imgsz 是整数
# results = model(input, device=device, retina_masks=True, iou=0.7, conf=0.25, imgsz=input_size)
# pil_image = fast_process(annotations=results[0].masks.data,
#                             image=input, high_quality=high_quality_visual, device=device)

cond_img_e = gr.Image(label="Input", value=default_example[0], type='pil')
cond_img_p = gr.Image(label="Input with points", value=default_example[0], type='pil')

segm_img_e = gr.Image(label="Segmented Image", interactive=False, type='pil')
segm_img_p = gr.Image(label="Segmented Image with points", interactive=False, type='pil')

global_points = []
global_point_label = [] # TODO:Clear points each image

input_size_slider = gr.components.Slider(minimum=512,
                                         maximum=1024,
                                         value=1024,
                                         step=64,
                                         label='Input_size',
                                         info='Our model was trained on a size of 1024')

with gr.Blocks(css=css, title='Fast Segment Anything') as demo:
    with gr.Row():
            with gr.Column(scale=1):
                # Title
                gr.Markdown(title)
        
            with gr.Column(scale=1):
                # News
                gr.Markdown(news)
                
    with gr.Tab("Everything mode"):
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_e.render()

            with gr.Column(scale=1):
                segm_img_e.render()

        # Submit & Clear
        with gr.Row():
            with gr.Column():
                input_size_slider.render()

                with gr.Row():
                    contour_check = gr.Checkbox(value=True, label='withContours', info='draw the edges of the masks')

                    with gr.Column():
                        segment_btn_e = gr.Button("Segment Everything", variant='primary')
                        clear_btn_e = gr.Button("Clear", variant="secondary")

                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(examples=examples,
                            inputs=[cond_img_e],
                            outputs=segm_img_e,
                            fn=segment_everything,
                            cache_examples=True,
                            examples_per_page=4)

            with gr.Column():
                with gr.Accordion("Advanced options", open=False):
                    iou_threshold = gr.Slider(0.1, 0.9, 0.7, step=0.1, label='iou', info='iou threshold for filtering the annotations')
                    conf_threshold = gr.Slider(0.1, 0.9, 0.25, step=0.05, label='conf', info='object confidence threshold')
                    with gr.Row():
                        mor_check = gr.Checkbox(value=False, label='better_visual_quality', info='better quality using morphologyEx')
                        with gr.Column():
                            retina_check = gr.Checkbox(value=True, label='use_retina', info='draw high-resolution segmentation masks')
                    
                # Description
                gr.Markdown(description_e)

    with gr.Tab("Points mode"):
        # Images
        with gr.Row(variant="panel"):
            with gr.Column(scale=1):
                cond_img_p.render()

            with gr.Column(scale=1):
                segm_img_p.render()
                
        # Submit & Clear
        with gr.Row():
            with gr.Column():
                with gr.Row():
                    add_or_remove = gr.Radio(["Add Mask", "Remove Area"], value="Add Mask", label="Point_label (foreground/background)")

                    with gr.Column():
                        segment_btn_p = gr.Button("Segment with points prompt", variant='primary')
                        clear_btn_p = gr.Button("Clear points", variant='secondary')

                gr.Markdown("Try some of the examples below ⬇️")
                gr.Examples(examples=examples,
                            inputs=[cond_img_p],
                            outputs=segm_img_p,
                            fn=segment_with_points,
                            # cache_examples=True,
                            examples_per_page=4)

            with gr.Column():
                # Description
                gr.Markdown(description_p)
        
    cond_img_p.select(get_points_with_draw, [cond_img_p, add_or_remove], cond_img_p)

    segment_btn_e.click(segment_everything,
                    inputs=[cond_img_e, input_size_slider, iou_threshold, conf_threshold, mor_check, contour_check, retina_check],
                    outputs=segm_img_e)
    
    segment_btn_p.click(segment_with_points,
                    inputs=[cond_img_p],
                    outputs=[segm_img_p, cond_img_p])
    
    def clear():
        return None, None
    
    clear_btn_e.click(clear, outputs=[cond_img_e, segm_img_e])
    clear_btn_p.click(clear, outputs=[cond_img_p, segm_img_p])

demo.queue()
demo.launch()