AndreasLH's picture
upload repo
56bd2b5
import torch
import numpy as np
import matplotlib.pyplot as plt
#import open3d as o3d
from detectron2.structures import pairwise_iou
from pytorch3d.ops import box3d_overlap
##### Proposal
def normalize_vector(v):
v_mag = torch.sqrt(v.pow(2).sum())
v_mag = torch.max(v_mag, torch.tensor([1e-8], device=v.device))
v_mag = v_mag.view(1,1).expand(1,v.shape[0])
v = v/v_mag
return v[0]
def cross_product(u, v):
i = u[1]*v[2] - u[2]*v[1]
j = u[2]*v[0] - u[0]*v[2]
k = u[0]*v[1] - u[1]*v[0]
out = torch.cat((i.view(1,1), j.view(1,1), k.view(1,1)),1)
return out[0]
def compute_rotation_matrix_from_ortho6d(poses):
x_raw = poses[0:3]
y_raw = poses[3:6]
x = normalize_vector(x_raw)
z = cross_product(x,y_raw)
z = normalize_vector(z)
y = cross_product(z,x)
x = x.view(-1,3,1)
y = y.view(-1,3,1)
z = z.view(-1,3,1)
matrix = torch.cat((x,y,z), 2)[0]
return matrix
def sample_normal_in_range(means, stds, count, threshold_low=None, threshold_high=None):
device = means.device
# Generate samples from a normal distribution
samples = torch.normal(means.unsqueeze(1).expand(-1,count), stds.unsqueeze(1).expand(-1,count))
# Ensure that all samples are greater than threshold_low and less than threshold_high
if threshold_high is not None and threshold_low is not None:
tries = 0
threshold_high = threshold_high.unsqueeze(1).expand_as(samples)
while torch.any((samples < threshold_low) | (samples > threshold_high)):
invalid_mask = (samples < threshold_low) | (samples > threshold_high)
# Replace invalid samples with new samples drawn from the normal distribution, could be done more optimal by sampling only sum(invalid mask) new samples, but matching of correct means is difficult then
samples[invalid_mask] = torch.normal(means.unsqueeze(1).expand(-1,count), stds.unsqueeze(1).expand(-1,count))[invalid_mask]
tries += 1
if tries == 10000:
break
return samples.to(device)
def randn_orthobasis_torch(num_samples=1,num_instances=1):
z = torch.randn(num_instances, num_samples, 3, 3)
z = z / torch.norm(z, p=2, dim=-1, keepdim=True)
z[:, :, 0] = torch.cross(z[:, :, 1], z[:, :, 2], dim=-1)
z[:, :, 0] = z[:, :, 0] / torch.norm(z[:, :, 0], dim=-1, keepdim=True)
z[:, :, 1] = torch.cross(z[:, :, 2], z[:, :, 0], dim=-1)
z[:, :, 1] = z[:, :, 1] / torch.norm(z[:, :, 1], dim=-1, keepdim=True)
return z
def randn_orthobasis(num_samples=1):
z = np.random.randn(num_samples, 3, 3)
z = z / np.linalg.norm(z, axis=-1, keepdims=True)
z[:, 0] = np.cross(z[:, 1], z[:, 2], axis=-1)
z[:, 0] = z[:, 0] / np.linalg.norm(z[:, 0], axis=-1, keepdims=True)
z[:, 1] = np.cross(z[:, 2], z[:, 0], axis=-1)
z[:, 1] = z[:, 1] / np.linalg.norm(z[:, 1], axis=-1, keepdims=True)
return z
# ##things for making rotations
def vec_perp(vec):
'''generate a vector perpendicular to vec in 3d'''
# https://math.stackexchange.com/a/2450825
a, b, c = vec
if a == 0:
return np.array([0,c,-b])
return np.array(normalize_vector(torch.tensor([b,-a,0])))
def orthobasis_from_normal(normal, yaw_angle=0):
'''generate an orthonormal/Rotation matrix basis from a normal vector in 3d
returns a 3x3 matrix with the basis vectors as columns, 3rd column is the original normal vector
'''
x = rotate_vector(vec_perp(normal), normal, yaw_angle)
x = x / np.linalg.norm(x, ord=2)
y = np.cross(normal, x)
return np.array([x, normal, y]).T # the vectors should be as columns
def rotate_vector(v, k, theta):
'''rotate a vector v around an axis k by an angle theta
it is assumed that k is a unit vector (p2 norm = 1)'''
# https://medium.com/@sim30217/rodrigues-rotation-formula-47489db49050
cos_theta = np.cos(theta)
sin_theta = np.sin(theta)
term1 = v * cos_theta
term2 = np.cross(k, v) * sin_theta
term3 = k * np.dot(k, v) * (1 - cos_theta)
return term1 + term2 + term3
def vec_perp_t(vec):
'''generate a vector perpendicular to vec in 3d'''
# https://math.stackexchange.com/a/2450825
a, b, c = vec
if a == 0:
return torch.tensor([0,c,-b], device=vec.device)
return normalize_vector(torch.tensor([b,-a,0], device=vec.device))
def orthobasis_from_normal_t(normal:torch.Tensor, yaw_angles:torch.Tensor=0):
'''generate an orthonormal/Rotation matrix basis from a normal vector in 3d
normal is assumed to be normalised
returns a (no. of yaw_angles)x3x3 matrix with the basis vectors as columns, 3rd column is the original normal vector
'''
n = len(yaw_angles)
x = rotate_vector_t(vec_perp_t(normal), normal, yaw_angles)
# x = x / torch.norm(x, p=2)
y = torch.cross(normal.view(-1,1), x)
# y = y / torch.norm(y, p=2, dim=1)
return torch.cat([x.t(), normal.unsqueeze(0).repeat(n, 1), y.t()],dim=1).reshape(n,3,3).transpose(2,1) # the vectors should be as columns
def rotate_vector_t(v, k, theta):
'''rotate a vector v around an axis k by an angle theta
it is assumed that k is a unit vector (p2 norm = 1)'''
# https://medium.com/@sim30217/rodrigues-rotation-formula-47489db49050
cos_theta = torch.cos(theta)
sin_theta = torch.sin(theta)
v2 = v.view(-1,1)
term1 = v2 * cos_theta
term2 = torch.cross(k, v).view(-1, 1) * sin_theta
term3 = (k * (k @ v)).view(-1, 1) * (1 - cos_theta)
return (term1 + term2 + term3)
# ########### End rotations
def gt_in_norm_range(range,gt):
tmp = gt-range[0]
res = tmp / abs(range[1] - range[0])
return res
if range[0] > 0: # both positive
tmp = gt-range[0]
res = tmp / abs(range[1] - range[0])
elif range[1] > 0: # lower negative upper positive
if gt > 0:
tmp = gt-range[0]
else:
tmp = range[1]-gt
res = tmp / abs(range[1] - range[0])
else: # both negative
tmp = range[1]-gt
res = tmp / abs(range[1] - range[0])
return res
def vectorized_linspace(start_tensor, end_tensor, number_of_steps):
# Calculate spacing
spacing = (end_tensor - start_tensor) / (number_of_steps - 1)
# Create linear spaces with arange
linear_spaces = torch.arange(start=0, end=number_of_steps, dtype=start_tensor.dtype, device=start_tensor.device)
linear_spaces = linear_spaces.repeat(start_tensor.size(0),1)
linear_spaces = linear_spaces * spacing[:,None] + start_tensor[:,None]
return linear_spaces
##### Scoring
def iou_2d(gt_box, proposal_boxes):
'''
gt_box: Boxes
proposal_box: Boxes
'''
IoU = pairwise_iou(gt_box,proposal_boxes).flatten()
return IoU
def iou_3d(gt_cube, proposal_cubes):
"""
Compute the Intersection over Union (IoU) of two 3D cubes.
Parameters:
- gt_cube: GT Cube.
- proposal_cube: List of Proposal Cubes.
Returns:
- iou: Intersection over Union (IoU) value.
"""
gt_corners = gt_cube.get_all_corners()[0]
proposal_corners = proposal_cubes.get_all_corners()[0]
vol, iou = box3d_overlap(gt_corners,proposal_corners)
iou = iou[0]
return iou
def custom_mapping(x,beta=1.7):
'''
maps the input curve to be S shaped instead of linear
Args:
beta: number > 1, higher beta is more aggressive
x: list of floats betweeen and including 0 and 1
beta: number > 1 higher beta is more aggressive
'''
mapped_list = []
for i in range(len(x)):
if x[i] <= 0:
mapped_list.append(0.0)
else:
mapped_list.append((1 / (1 + (x[i] / (1 - x[i])) ** (-beta))))
return mapped_list
def mask_iou(segmentation_mask, bube_mask):
'''
Area is of segmentation_mask
'''
bube_mask = torch.tensor(bube_mask, device=segmentation_mask.device)
intersection = (segmentation_mask * bube_mask).sum()
if intersection == 0:
return torch.tensor(0.0)
union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
return intersection / union
def mod_mask_iou(segmentation_mask, bube_mask):
'''
Area is of segmentation_mask
'''
bube_mask = torch.tensor(bube_mask, device=segmentation_mask.device)
intersection = (segmentation_mask * bube_mask).sum()
if intersection == 0:
return torch.tensor(0.0)
union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
return intersection**5 / union # NOTE not standard IoU
def mask_iou_loss(segmentation_mask, bube_mask):
'''
Area is of segmentation_mask
'''
intersection = (segmentation_mask * bube_mask).sum()
if intersection == 0:
return torch.tensor(0.0)
union = torch.logical_or(segmentation_mask, bube_mask).to(torch.int).sum()
return intersection / union
def is_gt_included(gt_cube,x_range,y_range,z_range, w_prior, h_prior, l_prior):
# Define how far away dimensions need to be to be counted as unachievable
stds_away = 1.5
# Center
because_of = []
if not (x_range[0] < gt_cube.center[0] < x_range[1]):
if (gt_cube.center[0] < x_range[0]):
val = abs(x_range[0] - gt_cube.center[0])
else:
val = abs(gt_cube.center[0] - x_range[1])
because_of.append(f'x by {val:.1f}')
if not (y_range[0] < gt_cube.center[1] < y_range[1]):
if (gt_cube.center[1] < y_range[0]):
val = abs(y_range[0] - gt_cube.center[1])
else:
val = abs(gt_cube.center[1] - y_range[1])
because_of.append(f'y by {val:.1f}')
# Depth
if not (z_range[0] < gt_cube.center[2] < z_range[1]):
if (gt_cube.center[2] < z_range[0]):
val = abs(z_range[0] - gt_cube.center[2])
else:
val = abs(gt_cube.center[2] - z_range[1])
because_of.append(f'z by {val:.1f}')
# Dimensions
if (gt_cube.dimensions[0] < w_prior[0]-stds_away*w_prior[1]):
because_of.append('w-')
if (gt_cube.dimensions[0] > w_prior[0]+stds_away*w_prior[1]):
because_of.append('w+')
if (gt_cube.dimensions[1] < h_prior[0]-stds_away*h_prior[1]):
because_of.append('h-')
if (gt_cube.dimensions[1] > h_prior[0]+stds_away*h_prior[1]):
because_of.append('h+')
if (gt_cube.dimensions[2] < l_prior[0]-stds_away*l_prior[1]):
because_of.append('l-')
if (gt_cube.dimensions[2] > l_prior[0]+stds_away*l_prior[1]):
because_of.append('l+')
if because_of == []:
return True
else:
print('GT cannot be found due to',because_of)
return False
# rotation nothing yet
def euler_to_unit_vector(eulers):
"""
Convert Euler angles to a unit vector.
"""
yaw, pitch, roll = eulers
# Calculate the components of the unit vector
x = np.cos(yaw) * np.cos(pitch)
y = np.sin(yaw) * np.cos(pitch)
z = np.sin(pitch)
# Normalize the vector
length = np.sqrt(x**2 + y**2 + z**2)
unit_vector = np.array([x, y, z]) / length
return unit_vector
# helper functions for plotting segmentation masks
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_mask2(masks:np.array, im:np.array, random_color=False):
"""
Display the masks on top of the image.
Args:
masks (np.array): Array of masks with shape (h, w, 4).
im (np.array): Image with shape (h, w, 3).
random_color (bool, optional): Whether to use random colors for the masks. Defaults to False.
Returns:
np.array: Image with masks displayed on top.
"""
im_expanded = np.concatenate((im, np.ones((im.shape[0],im.shape[1],1))*255), axis=-1)/255
mask_image = np.zeros((im.shape[0],im.shape[1],4))
for i, mask in enumerate(masks):
if isinstance(random_color, list):
color = random_color[i]
else:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
h, w = mask.shape[-2:]
mask_sub = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
mask_image = mask_image + mask_sub
mask_binary = (mask_image > 0).astype(bool)
im_out = im_expanded * ~mask_binary + (0.5* mask_image + 0.5 * (im_expanded * mask_binary))
im_out = im_out.clip(0,1)
return im_out
def show_points(coords, labels, ax, marker_size=375):
pos_points = coords[labels==1]
neg_points = coords[labels==0]
ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
def show_box(box, ax):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
# Convex Hull
import torch
def direction(p1, p2, p3):
return (p2[0] - p1[0]) * (p3[1] - p1[1]) - (p2[1] - p1[1]) * (p3[0] - p1[0])
def distance_sq(p1, p2):
return (p2[0] - p1[0])**2 + (p2[1] - p1[1])**2
def findDuplicates(arr):
Len = len(arr)
ifPresent = False
a1 = []
idx = []
for i in range(Len - 1):
for j in range(i + 1, Len):
# Checking if element is present in the ArrayList or not if present then break
if torch.all(arr[i] == arr[j]):
# if len(a1) == 0:
# a1 arr[i]
# idx.append(i)
# ifPresent = True
# else:
# # if arr[i] in a1:
# # break
# # # If element is not present in the ArrayList then add it to ArrayList and make ifPresent true
# # else:
a1.append(arr[i])
idx.append(i)
ifPresent = True
if ifPresent:
return set(idx) # lazi inefficient implementation
else:
return None
def jarvis_march(points):
'''https://algorithmtutor.com/Computational-Geometry/Convex-Hull-Algorithms-Jarvis-s-March/
https://algorithmtutor.com/Computational-Geometry/Determining-if-two-consecutive-segments-turn-left-or-right/ '''
# remove duplicates
duplicates = findDuplicates(points)
# this is necessary if there are > 2 duplicates of the same element
if duplicates is not None:
plusone = torch.zeros_like(points)
for i, d in enumerate(duplicates):
plusone[d] += i + 1
points = points + plusone
# find the lower left point
min_x = torch.min(points[:, 0])
candidates = (points[:, 0] == min_x).nonzero(as_tuple=True)[0]
# If there are multiple points, choose the one with the highest y value
if len(candidates) > 1:
index = candidates[torch.argmax(points[candidates][:, 1])]
else:
index = candidates[0]
a = points[index]
# selection sort
l = index
result = []
result.append(a)
while (True):
q = (l + 1) % len(points)
for i in range(len(points)):
if i == l:
continue
# find the greatest left turn
# in case of collinearity, consider the farthest point
d = direction(points[l], points[i], points[q])
if d > 0 or (d == 0 and distance_sq(points[i], points[l]) > distance_sq(points[q], points[l])):
q = i
l = q
if l == index:
break
result.append(points[q])
return torch.flip(torch.stack(result), [0,])
def fill_polygon(mask, polygon):
'''
inspired by https://web.archive.org/web/20120323102807/http://local.wasp.uwa.edu.au/~pbourke/geometry/insidepoly/
'''
h, w = mask.shape
Y, X = torch.meshgrid(torch.arange(h), torch.arange(w), indexing='ij') # or xy??? xy is the numpy was
grid_coords = torch.stack([X.flatten(), Y.flatten()], dim=1).float().to(mask.device)
new_mask = torch.ones(h, w, device=mask.device)
zeros = torch.zeros(h, w, device=mask.device)
ones = torch.ones(h, w, device=mask.device)
# For some reason it is easier for me to comprehend the algorithm if we iterate counter-clockwise
for i in range(len(polygon)):
v1 = polygon[i]
v2 = polygon[(i + 1) % len(polygon)]
# Determine the direction of the edge
edge_direction = v2 - v1
# Given a line segment between P0 (x0,y0) and P1 (x1,y1), another point P (x,y) has the following relationship to the line segment.
# Compute
# (y - y0) (x1 - x0) - (x - x0) (y1 - y0)
# Check if the point is to the left of the edge
points = (grid_coords[:, 0] - v1[0]) * edge_direction[1] - (grid_coords[:, 1] - v1[1]) * edge_direction[0]
# we can do the threshold in a clever differentiable way
# this sets all values to be between 0 and 1
is_left = torch.min(torch.max(points.view(h, w), zeros), ones)
# do the intersection of the 2 masks, this progressily builds op the polygon
new_mask = new_mask * is_left
return new_mask
def convex_hull(mask, coords):
hull = jarvis_march(coords)
new_mask = fill_polygon(mask, hull)
return new_mask
if __name__ == '__main__':
import matplotlib.pyplot as plt
mask = torch.zeros(700, 700, dtype=torch.bool)
# p = torch.tensor([[5,6],[21.0,7],[21,20],[10,20],[15,20],[5,20],[11,8],[15,15],[17,6],[11,15]])
p = torch.tensor([[271.0000, 356.0000],
[ 25.3744, 356.0000],
[ 0.0000, 356.0000],
[ 0.0000, 89.5266],
[271.0000, 159.3112],
[ 95.5653, 201.7484],
[ 0.0000, 0.0000],
[271.0000, 0.0000]])
p2 = torch.tensor([[150.3456, 0.0000],
[479.0000, 0.0000],
[ 11.8427, 0.0000],
[ 0.0000, 0.0000],
[121.4681, 232.5976],
[375.6230, 383.9329],
[ 12.8765, 630.0000],
[ 0.0000, 344.7250]])
p3 = torch.tensor([[290.9577, 171.1176],
[197.7348, 483.7612],
[383.0000, 504.0000],
[383.0000, 27.6211],
[ 2.2419, 52.6505],
[ 0.0000, 399.6908],
[ 0.0000, 504.0000],
[ 0.0000, 0.0000]])
p4 = torch.tensor([[271.0000, 19.5241],
[271.0000, 356.0000],
[ 0.0000, 0.0000],
[271.0000, 0.0000],
[ 0.0000, 0.0000],
[163.0264, 77.9408],
[164.2467, 321.0222],
[ 0.0000, 356.0000],
[ 0.0000, 0.0000]])
p5 = torch.tensor([[272.0000, 1.0000],
[ 0.0000, 173.5156],
[ 74.8860, 141.3913],
[253.8221, 0.0000],
[271.0000, 0.0000],
[271.0000, 356.0000],
[262.5294, 327.9978],
[271.0000, 120.8048]])
mask5 = convex_hull(mask, p5)
mask4 = convex_hull(mask, p4)
mask1 = convex_hull(mask, p)
mask2 = convex_hull(mask, p2)
mask3 = convex_hull(mask, p3)
fig, ax = plt.subplots(1,5, figsize=(20,5))
ax[0].scatter(p[:,0], p[:,1], c='r')
ax[1].scatter(p2[:,0], p2[:,1], c='b')
ax[2].scatter(p3[:,0], p3[:,1], c='g')
ax[3].scatter(p4[:,0], p4[:,1], c='y')
ax[4].scatter(p5[:,0], p5[:,1], c='m')
ax[0].imshow(mask1)
ax[1].imshow(mask2)
ax[2].imshow(mask3)
ax[3].imshow(mask4)
ax[4].imshow(mask5)
plt.show()
a = 2