AndreasLH's picture
upload repo
56bd2b5
_BASE_: "Base.yaml"
SOLVER:
TYPE: "adam"
IMS_PER_BATCH: 2
BASE_LR: 0.001
STEPS: (5000, 8000)
MAX_ITER: 10000 #4972
WARMUP_ITERS: 0
CHECKPOINT_PERIOD: 1000
TEST:
EVAL_PERIOD: 2
VIS_PERIOD: 40
DATASETS:
TRAIN: ('SUNRGBD_train_mini', 'SUNRGBD_val_mini')
TEST: ('SUNRGBD_test_mini',)
CATEGORY_NAMES: ('chair', 'table', 'cabinet', 'car', 'lamp', 'books', 'sofa', 'pedestrian', 'picture', 'window', 'pillow', 'truck', 'door', 'blinds', 'sink', 'shelves', 'television', 'shoes', 'cup', 'bottle', 'bookcase', 'laptop', 'desk', 'cereal box', 'floor mat', 'traffic cone', 'mirror', 'barrier', 'counter', 'camera', 'bicycle', 'toilet', 'bus', 'bed', 'refrigerator', 'trailer', 'box', 'oven', 'clothes', 'van', 'towel', 'motorcycle', 'night stand', 'stove', 'machine', 'stationery', 'bathtub', 'cyclist', 'curtain', 'bin')
MODEL:
ROI_HEADS:
NAME: 'ROIHeads_Score' # name of the class that is the 3d predictor
NUM_CLASSES: 50
POSITIVE_FRACTION: 0.25 # we can use this to control the ratio of positive to negative sampled cubes in
ROI_CUBE_HEAD:
NAME: 'ScoreHead' # name of the 3d head
DIMS_PRIORS_ENABLED: False
POOLER_TYPE: 'ROIAlignV2'
POOLER_RESOLUTION: 5
META_ARCHITECTURE: 'ScoreNet' # name of the overall arch that calls the ROI_HEADS.NAME and ROI_CUBE_HEAD.NAME