RVC-GUI / main /inference /create_dataset.py
AnhP's picture
Upload 82 files
e4d8df5 verified
raw
history blame
12.7 kB
import os
import sys
import time
import yt_dlp
import shutil
import librosa
import logging
import argparse
import warnings
import logging.handlers
from soundfile import read, write
from distutils.util import strtobool
sys.path.append(os.getcwd())
from main.configs.config import Config
from main.library.algorithm.separator import Separator
from main.library.utils import process_audio, merge_audio
config = Config()
translations = config.translations
dataset_temp = os.path.join("dataset_temp")
logger = logging.getLogger(__name__)
if logger.hasHandlers(): logger.handlers.clear()
else:
console_handler = logging.StreamHandler()
console_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
console_handler.setFormatter(console_formatter)
console_handler.setLevel(logging.INFO)
file_handler = logging.handlers.RotatingFileHandler(os.path.join("assets", "logs", "create_dataset.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
file_formatter = logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S")
file_handler.setFormatter(file_formatter)
file_handler.setLevel(logging.DEBUG)
logger.addHandler(console_handler)
logger.addHandler(file_handler)
logger.setLevel(logging.DEBUG)
def parse_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--input_audio", type=str, required=True)
parser.add_argument("--output_dataset", type=str, default="./dataset")
parser.add_argument("--sample_rate", type=int, default=44100)
parser.add_argument("--clean_dataset", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--clean_strength", type=float, default=0.7)
parser.add_argument("--separator_reverb", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--kim_vocal_version", type=int, default=2)
parser.add_argument("--overlap", type=float, default=0.25)
parser.add_argument("--segments_size", type=int, default=256)
parser.add_argument("--mdx_hop_length", type=int, default=1024)
parser.add_argument("--mdx_batch_size", type=int, default=1)
parser.add_argument("--denoise_mdx", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip", type=lambda x: bool(strtobool(x)), default=False)
parser.add_argument("--skip_start_audios", type=str, default="0")
parser.add_argument("--skip_end_audios", type=str, default="0")
return parser.parse_args()
def main():
pid_path = os.path.join("assets", "create_dataset_pid.txt")
with open(pid_path, "w") as pid_file:
pid_file.write(str(os.getpid()))
args = parse_arguments()
input_audio, output_dataset, sample_rate, clean_dataset, clean_strength, separator_reverb, kim_vocal_version, overlap, segments_size, hop_length, batch_size, denoise_mdx, skip, skip_start_audios, skip_end_audios = args.input_audio, args.output_dataset, args.sample_rate, args.clean_dataset, args.clean_strength, args.separator_reverb, args.kim_vocal_version, args.overlap, args.segments_size, args.mdx_hop_length, args.mdx_batch_size, args.denoise_mdx, args.skip, args.skip_start_audios, args.skip_end_audios
log_data = {translations['audio_path']: input_audio, translations['output_path']: output_dataset, translations['sr']: sample_rate, translations['clear_dataset']: clean_dataset, translations['dereveb_audio']: separator_reverb, translations['segments_size']: segments_size, translations['overlap']: overlap, "Hop length": hop_length, translations['batch_size']: batch_size, translations['denoise_mdx']: denoise_mdx, translations['skip']: skip}
if clean_dataset: log_data[translations['clean_strength']] = clean_strength
if skip:
log_data[translations['skip_start']] = skip_start_audios
log_data[translations['skip_end']] = skip_end_audios
for key, value in log_data.items():
logger.debug(f"{key}: {value}")
if kim_vocal_version not in [1, 2]: raise ValueError(translations["version_not_valid"])
start_time = time.time()
try:
paths = []
if not os.path.exists(dataset_temp): os.makedirs(dataset_temp, exist_ok=True)
urls = input_audio.replace(", ", ",").split(",")
for url in urls:
path = downloader(url, urls.index(url))
paths.append(path)
if skip:
skip_start_audios = skip_start_audios.replace(", ", ",").split(",")
skip_end_audios = skip_end_audios.replace(", ", ",").split(",")
if len(skip_start_audios) < len(paths) or len(skip_end_audios) < len(paths):
logger.warning(translations["skip<audio"])
sys.exit(1)
elif len(skip_start_audios) > len(paths) or len(skip_end_audios) > len(paths):
logger.warning(translations["skip>audio"])
sys.exit(1)
else:
for audio, skip_start_audio, skip_end_audio in zip(paths, skip_start_audios, skip_end_audios):
skip_start(audio, skip_start_audio)
skip_end(audio, skip_end_audio)
separator_paths = []
for audio in paths:
vocals = separator_music_main(audio, dataset_temp, segments_size, overlap, denoise_mdx, kim_vocal_version, hop_length, batch_size, sample_rate)
if separator_reverb: vocals = separator_reverb_audio(vocals, dataset_temp, segments_size, overlap, denoise_mdx, hop_length, batch_size, sample_rate)
separator_paths.append(vocals)
paths = separator_paths
processed_paths = []
for audio in paths:
cut_files, time_stamps = process_audio(logger, audio, os.path.dirname(audio))
processed_paths.append(merge_audio(cut_files, time_stamps, audio, os.path.splitext(audio)[0] + "_processed" + ".wav", "wav"))
paths = processed_paths
for audio_path in paths:
data, sample_rate = read(audio_path)
data = librosa.to_mono(data.T)
if clean_dataset:
from main.tools.noisereduce import reduce_noise
data = reduce_noise(y=data, prop_decrease=clean_strength, device=config.device)
write(audio_path, data, sample_rate)
except Exception as e:
logger.error(f"{translations['create_dataset_error']}: {e}")
import traceback
logger.error(traceback.format_exc())
finally:
for audio in paths:
shutil.move(audio, output_dataset)
if os.path.exists(dataset_temp): shutil.rmtree(dataset_temp, ignore_errors=True)
elapsed_time = time.time() - start_time
if os.path.exists(pid_path): os.remove(pid_path)
logger.info(translations["create_dataset_success"].format(elapsed_time=f"{elapsed_time:.2f}"))
def downloader(url, name):
with warnings.catch_warnings():
warnings.simplefilter("ignore")
ydl_opts = {"format": "bestaudio/best", "outtmpl": os.path.join(dataset_temp, f"{name}"), "postprocessors": [{"key": "FFmpegExtractAudio", "preferredcodec": "wav", "preferredquality": "192"}], "no_warnings": True, "noplaylist": True, "noplaylist": True, "verbose": False}
logger.info(f"{translations['starting_download']}: {url}...")
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.extract_info(url)
logger.info(f"{translations['download_success']}: {url}")
return os.path.join(dataset_temp, f"{name}" + ".wav")
def skip_start(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds >= total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_start']}: {input_file}...")
write(input_file, data[int(seconds * sr):], sr)
logger.info(translations["skip_start_audio"].format(input_file=input_file))
def skip_end(input_file, seconds):
data, sr = read(input_file)
total_duration = len(data) / sr
if seconds <= 0: logger.warning(translations["=<0"])
elif seconds > total_duration: logger.warning(translations["skip_warning"].format(seconds=seconds, total_duration=f"{total_duration:.2f}"))
else:
logger.info(f"{translations['skip_end']}: {input_file}...")
write(input_file, data[:-int(seconds * sr)], sr)
logger.info(translations["skip_end_audio"].format(input_file=input_file))
def separator_music_main(input, output, segments_size, overlap, denoise, version, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
model = f"Kim_Vocal_{version}.onnx"
output_separator = separator_main(audio_file=input, model_filename=model, output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=batch_size, mdx_hop_length=hop_length, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_separator:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Instrumental)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(Vocals)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
return rename_file
def separator_reverb_audio(input, output, segments_size, overlap, denoise, hop_length, batch_size, sample_rate):
if not os.path.exists(input):
logger.warning(translations["input_not_valid"])
return None
if not os.path.exists(output):
logger.warning(translations["output_not_valid"])
return None
logger.info(f"{translations['dereverb']}: {input}...")
output_dereverb = separator_main(audio_file=input, model_filename="Reverb_HQ_By_FoxJoy.onnx", output_format="wav", output_dir=output, mdx_segment_size=segments_size, mdx_overlap=overlap, mdx_batch_size=hop_length, mdx_hop_length=batch_size, mdx_enable_denoise=denoise, sample_rate=sample_rate)
for f in output_dereverb:
path = os.path.join(output, f)
if not os.path.exists(path): logger.error(translations["not_found"].format(name=path))
if '_(Reverb)_' in f: os.rename(path, os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav")
elif '_(No Reverb)_' in f:
rename_file = os.path.splitext(path)[0].replace("(", "").replace(")", "") + ".wav"
os.rename(path, rename_file)
logger.info(f"{translations['dereverb_success']}: {rename_file}")
return rename_file
def separator_main(audio_file=None, model_filename="Kim_Vocal_1.onnx", output_format="wav", output_dir=".", mdx_segment_size=256, mdx_overlap=0.25, mdx_batch_size=1, mdx_hop_length=1024, mdx_enable_denoise=True, sample_rate=44100):
try:
separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=sample_rate, mdx_params={"hop_length": mdx_hop_length, "segment_size": mdx_segment_size, "overlap": mdx_overlap, "batch_size": mdx_batch_size, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
except:
logger.debug(translations["default_setting"])
separator = Separator(logger=logger, log_formatter=file_formatter, log_level=logging.INFO, output_dir=output_dir, output_format=output_format, output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": mdx_enable_denoise})
separator.load_model(model_filename=model_filename)
return separator.separate(audio_file)
if __name__ == "__main__": main()