|
import os
|
|
import sys
|
|
import glob
|
|
import json
|
|
import torch
|
|
import hashlib
|
|
import logging
|
|
import argparse
|
|
import datetime
|
|
import warnings
|
|
import logging.handlers
|
|
|
|
import numpy as np
|
|
import soundfile as sf
|
|
import matplotlib.pyplot as plt
|
|
import torch.distributed as dist
|
|
import torch.utils.data as tdata
|
|
import torch.multiprocessing as mp
|
|
|
|
from tqdm import tqdm
|
|
from collections import OrderedDict
|
|
from random import randint, shuffle
|
|
from torch.utils.checkpoint import checkpoint
|
|
from torch.cuda.amp import GradScaler, autocast
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
from time import time as ttime
|
|
from torch.nn import functional as F
|
|
from distutils.util import strtobool
|
|
from librosa.filters import mel as librosa_mel_fn
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
from torch.nn.utils.parametrizations import spectral_norm, weight_norm
|
|
|
|
sys.path.append(os.getcwd())
|
|
from main.configs.config import Config
|
|
from main.library.algorithm.residuals import LRELU_SLOPE
|
|
from main.library.algorithm.synthesizers import Synthesizer
|
|
from main.library.algorithm.commons import get_padding, slice_segments, clip_grad_value
|
|
|
|
MATPLOTLIB_FLAG = False
|
|
translations = Config().translations
|
|
warnings.filterwarnings("ignore")
|
|
logging.getLogger("torch").setLevel(logging.ERROR)
|
|
|
|
class HParams:
|
|
def __init__(self, **kwargs):
|
|
for k, v in kwargs.items():
|
|
self[k] = HParams(**v) if isinstance(v, dict) else v
|
|
|
|
def keys(self):
|
|
return self.__dict__.keys()
|
|
|
|
def items(self):
|
|
return self.__dict__.items()
|
|
|
|
def values(self):
|
|
return self.__dict__.values()
|
|
|
|
def __len__(self):
|
|
return len(self.__dict__)
|
|
|
|
def __getitem__(self, key):
|
|
return self.__dict__[key]
|
|
|
|
def __setitem__(self, key, value):
|
|
self.__dict__[key] = value
|
|
|
|
def __contains__(self, key):
|
|
return key in self.__dict__
|
|
|
|
def __repr__(self):
|
|
return repr(self.__dict__)
|
|
|
|
def parse_arguments():
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--model_name", type=str, required=True)
|
|
parser.add_argument("--rvc_version", type=str, default="v2")
|
|
parser.add_argument("--save_every_epoch", type=int, required=True)
|
|
parser.add_argument("--save_only_latest", type=lambda x: bool(strtobool(x)), default=True)
|
|
parser.add_argument("--save_every_weights", type=lambda x: bool(strtobool(x)), default=True)
|
|
parser.add_argument("--total_epoch", type=int, default=300)
|
|
parser.add_argument("--sample_rate", type=int, required=True)
|
|
parser.add_argument("--batch_size", type=int, default=8)
|
|
parser.add_argument("--gpu", type=str, default="0")
|
|
parser.add_argument("--pitch_guidance", type=lambda x: bool(strtobool(x)), default=True)
|
|
parser.add_argument("--g_pretrained_path", type=str, default="")
|
|
parser.add_argument("--d_pretrained_path", type=str, default="")
|
|
parser.add_argument("--overtraining_detector", type=lambda x: bool(strtobool(x)), default=False)
|
|
parser.add_argument("--overtraining_threshold", type=int, default=50)
|
|
parser.add_argument("--cleanup", type=lambda x: bool(strtobool(x)), default=False)
|
|
parser.add_argument("--cache_data_in_gpu", type=lambda x: bool(strtobool(x)), default=False)
|
|
parser.add_argument("--model_author", type=str)
|
|
parser.add_argument("--vocoder", type=str, default="Default")
|
|
parser.add_argument("--checkpointing", type=lambda x: bool(strtobool(x)), default=False)
|
|
|
|
return parser.parse_args()
|
|
|
|
args = parse_arguments()
|
|
model_name, save_every_epoch, total_epoch, pretrainG, pretrainD, version, gpus, batch_size, sample_rate, pitch_guidance, save_only_latest, save_every_weights, cache_data_in_gpu, overtraining_detector, overtraining_threshold, cleanup, model_author, vocoder, checkpointing = args.model_name, args.save_every_epoch, args.total_epoch, args.g_pretrained_path, args.d_pretrained_path, args.rvc_version, args.gpu, args.batch_size, args.sample_rate, args.pitch_guidance, args.save_only_latest, args.save_every_weights, args.cache_data_in_gpu, args.overtraining_detector, args.overtraining_threshold, args.cleanup, args.model_author, args.vocoder, args.checkpointing
|
|
|
|
experiment_dir = os.path.join("assets", "logs", model_name)
|
|
training_file_path = os.path.join(experiment_dir, "training_data.json")
|
|
config_save_path = os.path.join(experiment_dir, "config.json")
|
|
|
|
os.environ["CUDA_VISIBLE_DEVICES"] = gpus.replace("-", ",")
|
|
n_gpus = len(gpus.split("-"))
|
|
|
|
torch.backends.cudnn.deterministic = False
|
|
torch.backends.cudnn.benchmark = False
|
|
|
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
|
|
global_step, last_loss_gen_all, overtrain_save_epoch = 0, 0, 0
|
|
loss_gen_history, smoothed_loss_gen_history, loss_disc_history, smoothed_loss_disc_history = [], [], [], []
|
|
|
|
with open(config_save_path, "r") as f:
|
|
config = json.load(f)
|
|
|
|
config = HParams(**config)
|
|
config.data.training_files = os.path.join(experiment_dir, "filelist.txt")
|
|
logger = logging.getLogger(__name__)
|
|
|
|
if logger.hasHandlers(): logger.handlers.clear()
|
|
else:
|
|
console_handler = logging.StreamHandler()
|
|
console_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
|
|
console_handler.setLevel(logging.INFO)
|
|
file_handler = logging.handlers.RotatingFileHandler(os.path.join(experiment_dir, "train.log"), maxBytes=5*1024*1024, backupCount=3, encoding='utf-8')
|
|
file_handler.setFormatter(logging.Formatter(fmt="\n%(asctime)s.%(msecs)03d | %(levelname)s | %(module)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S"))
|
|
file_handler.setLevel(logging.DEBUG)
|
|
logger.addHandler(console_handler)
|
|
logger.addHandler(file_handler)
|
|
logger.setLevel(logging.DEBUG)
|
|
|
|
log_data = {translations['modelname']: model_name, translations["save_every_epoch"]: save_every_epoch, translations["total_e"]: total_epoch, translations["dorg"].format(pretrainG=pretrainG, pretrainD=pretrainD): "", translations['training_version']: version, "Gpu": gpus, translations['batch_size']: batch_size, translations['pretrain_sr']: sample_rate, translations['training_f0']: pitch_guidance, translations['save_only_latest']: save_only_latest, translations['save_every_weights']: save_every_weights, translations['cache_in_gpu']: cache_data_in_gpu, translations['overtraining_detector']: overtraining_detector, translations['threshold']: overtraining_threshold, translations['cleanup_training']: cleanup, translations['memory_efficient_training']: checkpointing}
|
|
if model_author: log_data[translations["model_author"].format(model_author=model_author)] = ""
|
|
if vocoder != "Default": log_data[translations['vocoder']] = vocoder
|
|
|
|
for key, value in log_data.items():
|
|
logger.debug(f"{key}: {value}" if value != "" else f"{key} {value}")
|
|
|
|
def main():
|
|
global training_file_path, last_loss_gen_all, smoothed_loss_gen_history, loss_gen_history, loss_disc_history, smoothed_loss_disc_history, overtrain_save_epoch, model_author, vocoder, checkpointing
|
|
|
|
os.environ["MASTER_ADDR"] = "localhost"
|
|
os.environ["MASTER_PORT"] = str(randint(20000, 55555))
|
|
|
|
if torch.cuda.is_available(): device, n_gpus = torch.device("cuda"), torch.cuda.device_count()
|
|
elif torch.backends.mps.is_available(): device, n_gpus = torch.device("mps"), 1
|
|
else: device, n_gpus = torch.device("cpu"), 1
|
|
|
|
def start():
|
|
children = []
|
|
pid_data = {"process_pids": []}
|
|
|
|
with open(config_save_path, "r") as pid_file:
|
|
try:
|
|
pid_data.update(json.load(pid_file))
|
|
except json.JSONDecodeError:
|
|
pass
|
|
|
|
with open(config_save_path, "w") as pid_file:
|
|
for i in range(n_gpus):
|
|
subproc = mp.Process(target=run, args=(i, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, total_epoch, save_every_weights, config, device, model_author, vocoder, checkpointing))
|
|
children.append(subproc)
|
|
subproc.start()
|
|
pid_data["process_pids"].append(subproc.pid)
|
|
|
|
json.dump(pid_data, pid_file, indent=4)
|
|
|
|
for i in range(n_gpus):
|
|
children[i].join()
|
|
|
|
def load_from_json(file_path):
|
|
if os.path.exists(file_path):
|
|
with open(file_path, "r") as f:
|
|
data = json.load(f)
|
|
return (data.get("loss_disc_history", []), data.get("smoothed_loss_disc_history", []), data.get("loss_gen_history", []), data.get("smoothed_loss_gen_history", []))
|
|
return [], [], [], []
|
|
|
|
def continue_overtrain_detector(training_file_path):
|
|
if overtraining_detector and os.path.exists(training_file_path): (loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history) = load_from_json(training_file_path)
|
|
|
|
n_gpus = torch.cuda.device_count()
|
|
|
|
if not torch.cuda.is_available() and torch.backends.mps.is_available(): n_gpus = 1
|
|
if n_gpus < 1:
|
|
logger.warning(translations["not_gpu"])
|
|
n_gpus = 1
|
|
|
|
if cleanup:
|
|
for root, dirs, files in os.walk(experiment_dir, topdown=False):
|
|
for name in files:
|
|
file_path = os.path.join(root, name)
|
|
_, file_extension = os.path.splitext(name)
|
|
if (file_extension == ".0" or (name.startswith("D_") and file_extension == ".pth") or (name.startswith("G_") and file_extension == ".pth") or (file_extension == ".index")): os.remove(file_path)
|
|
|
|
for name in dirs:
|
|
if name == "eval":
|
|
folder_path = os.path.join(root, name)
|
|
for item in os.listdir(folder_path):
|
|
item_path = os.path.join(folder_path, item)
|
|
if os.path.isfile(item_path): os.remove(item_path)
|
|
os.rmdir(folder_path)
|
|
|
|
continue_overtrain_detector(training_file_path)
|
|
start()
|
|
|
|
def plot_spectrogram_to_numpy(spectrogram):
|
|
global MATPLOTLIB_FLAG
|
|
|
|
if not MATPLOTLIB_FLAG:
|
|
plt.switch_backend("Agg")
|
|
MATPLOTLIB_FLAG = True
|
|
|
|
fig, ax = plt.subplots(figsize=(10, 2))
|
|
|
|
plt.colorbar(ax.imshow(spectrogram, aspect="auto", origin="lower", interpolation="none"), ax=ax)
|
|
plt.xlabel("Frames")
|
|
plt.ylabel("Channels")
|
|
plt.tight_layout()
|
|
fig.canvas.draw()
|
|
plt.close(fig)
|
|
|
|
return np.frombuffer(fig.canvas.tostring_rgb(), dtype=np.uint8).reshape(fig.canvas.get_width_height()[::-1] + (3,))
|
|
|
|
def verify_checkpoint_shapes(checkpoint_path, model):
|
|
checkpoint = torch.load(checkpoint_path, map_location="cpu")
|
|
checkpoint_state_dict = checkpoint["model"]
|
|
try:
|
|
model_state_dict = model.module.load_state_dict(checkpoint_state_dict) if hasattr(model, "module") else model.load_state_dict(checkpoint_state_dict)
|
|
except RuntimeError:
|
|
logger.warning(translations["checkpointing_err"])
|
|
sys.exit(1)
|
|
else: del checkpoint, checkpoint_state_dict, model_state_dict
|
|
|
|
def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sample_rate=22050):
|
|
for k, v in scalars.items():
|
|
writer.add_scalar(k, v, global_step)
|
|
|
|
for k, v in histograms.items():
|
|
writer.add_histogram(k, v, global_step)
|
|
|
|
for k, v in images.items():
|
|
writer.add_image(k, v, global_step, dataformats="HWC")
|
|
|
|
for k, v in audios.items():
|
|
writer.add_audio(k, v, global_step, audio_sample_rate)
|
|
|
|
def load_checkpoint(checkpoint_path, model, optimizer=None, load_opt=1):
|
|
assert os.path.isfile(checkpoint_path), translations["not_found_checkpoint"].format(checkpoint_path=checkpoint_path)
|
|
checkpoint_dict = replace_keys_in_dict(replace_keys_in_dict(torch.load(checkpoint_path, map_location="cpu"), ".weight_v", ".parametrizations.weight.original1"), ".weight_g", ".parametrizations.weight.original0")
|
|
new_state_dict = {k: checkpoint_dict["model"].get(k, v) for k, v in (model.module.state_dict() if hasattr(model, "module") else model.state_dict()).items()}
|
|
|
|
if hasattr(model, "module"): model.module.load_state_dict(new_state_dict, strict=False)
|
|
else: model.load_state_dict(new_state_dict, strict=False)
|
|
|
|
if optimizer and load_opt == 1: optimizer.load_state_dict(checkpoint_dict.get("optimizer", {}))
|
|
logger.debug(translations["save_checkpoint"].format(checkpoint_path=checkpoint_path, checkpoint_dict=checkpoint_dict['iteration']))
|
|
return (model, optimizer, checkpoint_dict.get("learning_rate", 0), checkpoint_dict["iteration"])
|
|
|
|
def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
|
|
state_dict = (model.module.state_dict() if hasattr(model, "module") else model.state_dict())
|
|
torch.save(replace_keys_in_dict(replace_keys_in_dict({"model": state_dict, "iteration": iteration, "optimizer": optimizer.state_dict(), "learning_rate": learning_rate}, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), checkpoint_path)
|
|
logger.info(translations["save_model"].format(checkpoint_path=checkpoint_path, iteration=iteration))
|
|
|
|
def latest_checkpoint_path(dir_path, regex="G_*.pth"):
|
|
checkpoints = sorted(glob.glob(os.path.join(dir_path, regex)), key=lambda f: int("".join(filter(str.isdigit, f))))
|
|
return checkpoints[-1] if checkpoints else None
|
|
|
|
def load_wav_to_torch(full_path):
|
|
data, sample_rate = sf.read(full_path, dtype='float32')
|
|
return torch.FloatTensor(data.astype(np.float32)), sample_rate
|
|
|
|
def load_filepaths_and_text(filename, split="|"):
|
|
with open(filename, encoding="utf-8") as f:
|
|
return [line.strip().split(split) for line in f]
|
|
|
|
def feature_loss(fmap_r, fmap_g):
|
|
loss = 0
|
|
for dr, dg in zip(fmap_r, fmap_g):
|
|
for rl, gl in zip(dr, dg):
|
|
loss += torch.mean(torch.abs(rl.float().detach() - gl.float()))
|
|
return loss * 2
|
|
|
|
def discriminator_loss(disc_real_outputs, disc_generated_outputs):
|
|
loss = 0
|
|
r_losses, g_losses = [], []
|
|
|
|
for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
|
|
dr = dr.float()
|
|
dg = dg.float()
|
|
r_loss = torch.mean((1 - dr) ** 2)
|
|
g_loss = torch.mean(dg**2)
|
|
loss += r_loss + g_loss
|
|
r_losses.append(r_loss.item())
|
|
g_losses.append(g_loss.item())
|
|
return loss, r_losses, g_losses
|
|
|
|
def generator_loss(disc_outputs):
|
|
loss = 0
|
|
gen_losses = []
|
|
|
|
for dg in disc_outputs:
|
|
l = torch.mean((1 - dg.float()) ** 2)
|
|
gen_losses.append(l)
|
|
loss += l
|
|
return loss, gen_losses
|
|
|
|
def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
|
|
z_p = z_p.float()
|
|
logs_q = logs_q.float()
|
|
m_p = m_p.float()
|
|
logs_p = logs_p.float()
|
|
z_mask = z_mask.float()
|
|
kl = logs_p - logs_q - 0.5
|
|
kl += 0.5 * ((z_p - m_p) ** 2) * torch.exp(-2.0 * logs_p)
|
|
return torch.sum(kl * z_mask) / torch.sum(z_mask)
|
|
|
|
class TextAudioLoaderMultiNSFsid(tdata.Dataset):
|
|
def __init__(self, hparams):
|
|
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sample_rate = hparams.sample_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sample_rate = hparams.sample_rate
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
audiopaths_and_text_new, lengths = [], []
|
|
for audiopath, text, pitch, pitchf, dv in self.audiopaths_and_text:
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
|
audiopaths_and_text_new.append([audiopath, text, pitch, pitchf, dv])
|
|
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
|
|
|
self.audiopaths_and_text = audiopaths_and_text_new
|
|
self.lengths = lengths
|
|
|
|
def get_sid(self, sid):
|
|
try:
|
|
sid = torch.LongTensor([int(sid)])
|
|
except ValueError as e:
|
|
logger.error(translations["sid_error"].format(sid=sid, e=e))
|
|
sid = torch.LongTensor([0])
|
|
return sid
|
|
|
|
def get_audio_text_pair(self, audiopath_and_text):
|
|
phone, pitch, pitchf = self.get_labels(audiopath_and_text[1], audiopath_and_text[2], audiopath_and_text[3])
|
|
spec, wav = self.get_audio(audiopath_and_text[0])
|
|
dv = self.get_sid(audiopath_and_text[4])
|
|
len_phone = phone.size()[0]
|
|
len_spec = spec.size()[-1]
|
|
|
|
if len_phone != len_spec:
|
|
len_min = min(len_phone, len_spec)
|
|
len_wav = len_min * self.hop_length
|
|
spec, wav, phone = spec[:, :len_min], wav[:, :len_wav], phone[:len_min, :]
|
|
pitch, pitchf = pitch[:len_min], pitchf[:len_min]
|
|
return (spec, wav, phone, pitch, pitchf, dv)
|
|
|
|
def get_labels(self, phone, pitch, pitchf):
|
|
phone = np.repeat(np.load(phone), 2, axis=0)
|
|
n_num = min(phone.shape[0], 900)
|
|
return torch.FloatTensor(phone[:n_num, :]), torch.LongTensor(np.load(pitch)[:n_num]), torch.FloatTensor(np.load(pitchf)[:n_num])
|
|
|
|
def get_audio(self, filename):
|
|
audio, sample_rate = load_wav_to_torch(filename)
|
|
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))
|
|
audio_norm = audio.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
|
|
if os.path.exists(spec_filename):
|
|
try:
|
|
spec = torch.load(spec_filename)
|
|
except Exception as e:
|
|
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e))
|
|
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
else:
|
|
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
return spec, audio_norm
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
class TextAudioCollateMultiNSFsid:
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
|
|
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
|
|
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
|
|
spec_padded.zero_()
|
|
wave_padded.zero_()
|
|
max_phone_len = max([x[2].size(0) for x in batch])
|
|
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
|
|
pitch_padded, pitchf_padded = torch.LongTensor(len(batch), max_phone_len), torch.FloatTensor(len(batch), max_phone_len)
|
|
phone_padded.zero_()
|
|
pitch_padded.zero_()
|
|
pitchf_padded.zero_()
|
|
sid = torch.LongTensor(len(batch))
|
|
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
spec = row[0]
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
wave = row[1]
|
|
wave_padded[i, :, : wave.size(1)] = wave
|
|
wave_lengths[i] = wave.size(1)
|
|
phone = row[2]
|
|
phone_padded[i, : phone.size(0), :] = phone
|
|
phone_lengths[i] = phone.size(0)
|
|
pitch = row[3]
|
|
pitch_padded[i, : pitch.size(0)] = pitch
|
|
pitchf = row[4]
|
|
pitchf_padded[i, : pitchf.size(0)] = pitchf
|
|
sid[i] = row[5]
|
|
return (phone_padded, phone_lengths, pitch_padded, pitchf_padded, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)
|
|
|
|
class TextAudioLoader(tdata.Dataset):
|
|
def __init__(self, hparams):
|
|
self.audiopaths_and_text = load_filepaths_and_text(hparams.training_files)
|
|
self.max_wav_value = hparams.max_wav_value
|
|
self.sample_rate = hparams.sample_rate
|
|
self.filter_length = hparams.filter_length
|
|
self.hop_length = hparams.hop_length
|
|
self.win_length = hparams.win_length
|
|
self.sample_rate = hparams.sample_rate
|
|
self.min_text_len = getattr(hparams, "min_text_len", 1)
|
|
self.max_text_len = getattr(hparams, "max_text_len", 5000)
|
|
self._filter()
|
|
|
|
def _filter(self):
|
|
audiopaths_and_text_new, lengths = [], []
|
|
for entry in self.audiopaths_and_text:
|
|
if len(entry) >= 3:
|
|
audiopath, text, dv = entry[:3]
|
|
if self.min_text_len <= len(text) and len(text) <= self.max_text_len:
|
|
audiopaths_and_text_new.append([audiopath, text, dv])
|
|
lengths.append(os.path.getsize(audiopath) // (3 * self.hop_length))
|
|
|
|
self.audiopaths_and_text = audiopaths_and_text_new
|
|
self.lengths = lengths
|
|
|
|
def get_sid(self, sid):
|
|
try:
|
|
sid = torch.LongTensor([int(sid)])
|
|
except ValueError as e:
|
|
logger.error(translations["sid_error"].format(sid=sid, e=e))
|
|
sid = torch.LongTensor([0])
|
|
return sid
|
|
|
|
def get_audio_text_pair(self, audiopath_and_text):
|
|
phone = self.get_labels(audiopath_and_text[1])
|
|
spec, wav = self.get_audio(audiopath_and_text[0])
|
|
dv = self.get_sid(audiopath_and_text[2])
|
|
len_phone = phone.size()[0]
|
|
len_spec = spec.size()[-1]
|
|
|
|
if len_phone != len_spec:
|
|
len_min = min(len_phone, len_spec)
|
|
len_wav = len_min * self.hop_length
|
|
spec = spec[:, :len_min]
|
|
wav = wav[:, :len_wav]
|
|
phone = phone[:len_min, :]
|
|
return (spec, wav, phone, dv)
|
|
|
|
def get_labels(self, phone):
|
|
phone = np.repeat(np.load(phone), 2, axis=0)
|
|
return torch.FloatTensor(phone[:min(phone.shape[0], 900), :])
|
|
|
|
def get_audio(self, filename):
|
|
audio, sample_rate = load_wav_to_torch(filename)
|
|
if sample_rate != self.sample_rate: raise ValueError(translations["sr_does_not_match"].format(sample_rate=sample_rate, sample_rate2=self.sample_rate))
|
|
audio_norm = audio.unsqueeze(0)
|
|
spec_filename = filename.replace(".wav", ".spec.pt")
|
|
|
|
if os.path.exists(spec_filename):
|
|
try:
|
|
spec = torch.load(spec_filename)
|
|
except Exception as e:
|
|
logger.error(translations["spec_error"].format(spec_filename=spec_filename, e=e))
|
|
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
else:
|
|
spec = torch.squeeze(spectrogram_torch(audio_norm, self.filter_length, self.hop_length, self.win_length, center=False), 0)
|
|
torch.save(spec, spec_filename, _use_new_zipfile_serialization=False)
|
|
return spec, audio_norm
|
|
|
|
def __getitem__(self, index):
|
|
return self.get_audio_text_pair(self.audiopaths_and_text[index])
|
|
|
|
def __len__(self):
|
|
return len(self.audiopaths_and_text)
|
|
|
|
class TextAudioCollate:
|
|
def __init__(self, return_ids=False):
|
|
self.return_ids = return_ids
|
|
|
|
def __call__(self, batch):
|
|
_, ids_sorted_decreasing = torch.sort(torch.LongTensor([x[0].size(1) for x in batch]), dim=0, descending=True)
|
|
spec_lengths, wave_lengths = torch.LongTensor(len(batch)), torch.LongTensor(len(batch))
|
|
spec_padded, wave_padded = torch.FloatTensor(len(batch), batch[0][0].size(0), max([x[0].size(1) for x in batch])), torch.FloatTensor(len(batch), 1, max([x[1].size(1) for x in batch]))
|
|
spec_padded.zero_()
|
|
wave_padded.zero_()
|
|
max_phone_len = max([x[2].size(0) for x in batch])
|
|
phone_lengths, phone_padded = torch.LongTensor(len(batch)), torch.FloatTensor(len(batch), max_phone_len, batch[0][2].shape[1])
|
|
phone_padded.zero_()
|
|
sid = torch.LongTensor(len(batch))
|
|
for i in range(len(ids_sorted_decreasing)):
|
|
row = batch[ids_sorted_decreasing[i]]
|
|
spec = row[0]
|
|
spec_padded[i, :, : spec.size(1)] = spec
|
|
spec_lengths[i] = spec.size(1)
|
|
wave = row[1]
|
|
wave_padded[i, :, : wave.size(1)] = wave
|
|
wave_lengths[i] = wave.size(1)
|
|
phone = row[2]
|
|
phone_padded[i, : phone.size(0), :] = phone
|
|
phone_lengths[i] = phone.size(0)
|
|
sid[i] = row[3]
|
|
return (phone_padded, phone_lengths, spec_padded, spec_lengths, wave_padded, wave_lengths, sid)
|
|
|
|
class DistributedBucketSampler(tdata.distributed.DistributedSampler):
|
|
def __init__(self, dataset, batch_size, boundaries, num_replicas=None, rank=None, shuffle=True):
|
|
super().__init__(dataset, num_replicas=num_replicas, rank=rank, shuffle=shuffle)
|
|
self.lengths = dataset.lengths
|
|
self.batch_size = batch_size
|
|
self.boundaries = boundaries
|
|
self.buckets, self.num_samples_per_bucket = self._create_buckets()
|
|
self.total_size = sum(self.num_samples_per_bucket)
|
|
self.num_samples = self.total_size // self.num_replicas
|
|
|
|
def _create_buckets(self):
|
|
buckets = [[] for _ in range(len(self.boundaries) - 1)]
|
|
for i in range(len(self.lengths)):
|
|
idx_bucket = self._bisect(self.lengths[i])
|
|
if idx_bucket != -1: buckets[idx_bucket].append(i)
|
|
|
|
for i in range(len(buckets) - 1, -1, -1):
|
|
if len(buckets[i]) == 0:
|
|
buckets.pop(i)
|
|
self.boundaries.pop(i + 1)
|
|
|
|
num_samples_per_bucket = []
|
|
for i in range(len(buckets)):
|
|
len_bucket = len(buckets[i])
|
|
total_batch_size = self.num_replicas * self.batch_size
|
|
num_samples_per_bucket.append(len_bucket + ((total_batch_size - (len_bucket % total_batch_size)) % total_batch_size))
|
|
return buckets, num_samples_per_bucket
|
|
|
|
def __iter__(self):
|
|
g = torch.Generator()
|
|
g.manual_seed(self.epoch)
|
|
indices, batches = [], []
|
|
if self.shuffle:
|
|
for bucket in self.buckets:
|
|
indices.append(torch.randperm(len(bucket), generator=g).tolist())
|
|
else:
|
|
for bucket in self.buckets:
|
|
indices.append(list(range(len(bucket))))
|
|
|
|
for i in range(len(self.buckets)):
|
|
bucket = self.buckets[i]
|
|
len_bucket = len(bucket)
|
|
ids_bucket = indices[i]
|
|
rem = self.num_samples_per_bucket[i] - len_bucket
|
|
ids_bucket = (ids_bucket + ids_bucket * (rem // len_bucket) + ids_bucket[: (rem % len_bucket)])[self.rank :: self.num_replicas]
|
|
|
|
for j in range(len(ids_bucket) // self.batch_size):
|
|
batches.append([bucket[idx] for idx in ids_bucket[j * self.batch_size : (j + 1) * self.batch_size]])
|
|
|
|
if self.shuffle: batches = [batches[i] for i in torch.randperm(len(batches), generator=g).tolist()]
|
|
self.batches = batches
|
|
assert len(self.batches) * self.batch_size == self.num_samples
|
|
return iter(self.batches)
|
|
|
|
def _bisect(self, x, lo=0, hi=None):
|
|
if hi is None: hi = len(self.boundaries) - 1
|
|
|
|
if hi > lo:
|
|
mid = (hi + lo) // 2
|
|
if self.boundaries[mid] < x and x <= self.boundaries[mid + 1]: return mid
|
|
elif x <= self.boundaries[mid]: return self._bisect(x, lo, mid)
|
|
else: return self._bisect(x, mid + 1, hi)
|
|
else: return -1
|
|
|
|
def __len__(self):
|
|
return self.num_samples // self.batch_size
|
|
|
|
class MultiPeriodDiscriminator(torch.nn.Module):
|
|
def __init__(self, version, use_spectral_norm=False, checkpointing=False):
|
|
super(MultiPeriodDiscriminator, self).__init__()
|
|
self.checkpointing = checkpointing
|
|
periods = ([2, 3, 5, 7, 11, 17] if version == "v1" else [2, 3, 5, 7, 11, 17, 23, 37])
|
|
self.discriminators = torch.nn.ModuleList([DiscriminatorS(use_spectral_norm=use_spectral_norm, checkpointing=checkpointing)] + [DiscriminatorP(p, use_spectral_norm=use_spectral_norm, checkpointing=checkpointing) for p in periods])
|
|
|
|
def forward(self, y, y_hat):
|
|
y_d_rs, y_d_gs, fmap_rs, fmap_gs = [], [], [], []
|
|
for d in self.discriminators:
|
|
if self.training and self.checkpointing:
|
|
def forward_discriminator(d, y, y_hat):
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
return y_d_r, fmap_r, y_d_g, fmap_g
|
|
y_d_r, fmap_r, y_d_g, fmap_g = checkpoint(forward_discriminator, d, y, y_hat, use_reentrant=False)
|
|
else:
|
|
y_d_r, fmap_r = d(y)
|
|
y_d_g, fmap_g = d(y_hat)
|
|
|
|
y_d_rs.append(y_d_r); fmap_rs.append(fmap_r)
|
|
y_d_gs.append(y_d_g); fmap_gs.append(fmap_g)
|
|
return y_d_rs, y_d_gs, fmap_rs, fmap_gs
|
|
|
|
class DiscriminatorS(torch.nn.Module):
|
|
def __init__(self, use_spectral_norm=False, checkpointing=False):
|
|
super(DiscriminatorS, self).__init__()
|
|
self.checkpointing = checkpointing
|
|
norm_f = spectral_norm if use_spectral_norm else weight_norm
|
|
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv1d(1, 16, 15, 1, padding=7)), norm_f(torch.nn.Conv1d(16, 64, 41, 4, groups=4, padding=20)), norm_f(torch.nn.Conv1d(64, 256, 41, 4, groups=16, padding=20)), norm_f(torch.nn.Conv1d(256, 1024, 41, 4, groups=64, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 41, 4, groups=256, padding=20)), norm_f(torch.nn.Conv1d(1024, 1024, 5, 1, padding=2))])
|
|
self.conv_post = norm_f(torch.nn.Conv1d(1024, 1, 3, 1, padding=1))
|
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE)
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
for conv in self.convs:
|
|
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x))
|
|
fmap.append(x)
|
|
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
return torch.flatten(x, 1, -1), fmap
|
|
|
|
class DiscriminatorP(torch.nn.Module):
|
|
def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False, checkpointing=False):
|
|
super(DiscriminatorP, self).__init__()
|
|
self.period = period
|
|
self.checkpointing = checkpointing
|
|
norm_f = spectral_norm if use_spectral_norm else weight_norm
|
|
self.convs = torch.nn.ModuleList([norm_f(torch.nn.Conv2d(in_ch, out_ch, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))) for in_ch, out_ch in zip([1, 32, 128, 512, 1024], [32, 128, 512, 1024, 1024])])
|
|
self.conv_post = norm_f(torch.nn.Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
|
|
self.lrelu = torch.nn.LeakyReLU(LRELU_SLOPE)
|
|
|
|
def forward(self, x):
|
|
fmap = []
|
|
b, c, t = x.shape
|
|
if t % self.period != 0: x = torch.nn.functional.pad(x, (0, (self.period - (t % self.period))), "reflect")
|
|
x = x.view(b, c, -1, self.period)
|
|
for conv in self.convs:
|
|
x = checkpoint(self.lrelu, checkpoint(conv, x, use_reentrant = False), use_reentrant = False) if self.training and self.checkpointing else self.lrelu(conv(x))
|
|
fmap.append(x)
|
|
|
|
x = self.conv_post(x)
|
|
fmap.append(x)
|
|
return torch.flatten(x, 1, -1), fmap
|
|
|
|
class EpochRecorder:
|
|
def __init__(self):
|
|
self.last_time = ttime()
|
|
|
|
def record(self):
|
|
now_time = ttime()
|
|
elapsed_time = now_time - self.last_time
|
|
self.last_time = now_time
|
|
return translations["time_or_speed_training"].format(current_time=datetime.datetime.now().strftime("%H:%M:%S"), elapsed_time_str=str(datetime.timedelta(seconds=int(round(elapsed_time, 1)))))
|
|
|
|
def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
|
|
return torch.log(torch.clamp(x, min=clip_val) * C)
|
|
|
|
def dynamic_range_decompression_torch(x, C=1):
|
|
return torch.exp(x) / C
|
|
|
|
def spectral_normalize_torch(magnitudes):
|
|
return dynamic_range_compression_torch(magnitudes)
|
|
|
|
def spectral_de_normalize_torch(magnitudes):
|
|
return dynamic_range_decompression_torch(magnitudes)
|
|
|
|
mel_basis, hann_window = {}, {}
|
|
|
|
def spectrogram_torch(y, n_fft, hop_size, win_size, center=False):
|
|
global hann_window
|
|
|
|
wnsize_dtype_device = str(win_size) + "_" + str(y.dtype) + "_" + str(y.device)
|
|
if wnsize_dtype_device not in hann_window: hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
|
|
spec = torch.stft(torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft - hop_size) / 2), int((n_fft - hop_size) / 2)), mode="reflect").squeeze(1), n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device], center=center, pad_mode="reflect", normalized=False, onesided=True, return_complex=True)
|
|
return torch.sqrt(spec.real.pow(2) + spec.imag.pow(2) + 1e-6)
|
|
|
|
def spec_to_mel_torch(spec, n_fft, num_mels, sample_rate, fmin, fmax):
|
|
global mel_basis
|
|
|
|
fmax_dtype_device = str(fmax) + "_" + str(spec.dtype) + "_" + str(spec.device)
|
|
if fmax_dtype_device not in mel_basis: mel_basis[fmax_dtype_device] = torch.from_numpy(librosa_mel_fn(sr=sample_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)).to(dtype=spec.dtype, device=spec.device)
|
|
return spectral_normalize_torch(torch.matmul(mel_basis[fmax_dtype_device], spec))
|
|
|
|
def mel_spectrogram_torch(y, n_fft, num_mels, sample_rate, hop_size, win_size, fmin, fmax, center=False):
|
|
return spec_to_mel_torch(spectrogram_torch(y, n_fft, hop_size, win_size, center), n_fft, num_mels, sample_rate, fmin, fmax)
|
|
|
|
def replace_keys_in_dict(d, old_key_part, new_key_part):
|
|
updated_dict = OrderedDict() if isinstance(d, OrderedDict) else {}
|
|
for key, value in d.items():
|
|
updated_dict[(key.replace(old_key_part, new_key_part) if isinstance(key, str) else key)] = (replace_keys_in_dict(value, old_key_part, new_key_part) if isinstance(value, dict) else value)
|
|
return updated_dict
|
|
|
|
def extract_model(ckpt, sr, pitch_guidance, name, model_path, epoch, step, version, hps, model_author, vocoder):
|
|
try:
|
|
logger.info(translations["savemodel"].format(model_dir=model_path, epoch=epoch, step=step))
|
|
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
|
|
|
opt = OrderedDict(weight={key: value.half() for key, value in ckpt.items() if "enc_q" not in key})
|
|
opt["config"] = [hps.data.filter_length // 2 + 1, 32, hps.model.inter_channels, hps.model.hidden_channels, hps.model.filter_channels, hps.model.n_heads, hps.model.n_layers, hps.model.kernel_size, hps.model.p_dropout, hps.model.resblock, hps.model.resblock_kernel_sizes, hps.model.resblock_dilation_sizes, hps.model.upsample_rates, hps.model.upsample_initial_channel, hps.model.upsample_kernel_sizes, hps.model.spk_embed_dim, hps.model.gin_channels, hps.data.sample_rate]
|
|
opt["epoch"] = f"{epoch}epoch"
|
|
opt["step"] = step
|
|
opt["sr"] = sr
|
|
opt["f0"] = int(pitch_guidance)
|
|
opt["version"] = version
|
|
opt["creation_date"] = datetime.datetime.now().isoformat()
|
|
opt["model_hash"] = hashlib.sha256(f"{str(ckpt)} {epoch} {step} {datetime.datetime.now().isoformat()}".encode()).hexdigest()
|
|
opt["model_name"] = name
|
|
opt["author"] = model_author
|
|
opt["vocoder"] = vocoder
|
|
|
|
torch.save(replace_keys_in_dict(replace_keys_in_dict(opt, ".parametrizations.weight.original1", ".weight_v"), ".parametrizations.weight.original0", ".weight_g"), model_path)
|
|
except Exception as e:
|
|
logger.error(f"{translations['extract_model_error']}: {e}")
|
|
|
|
def run(rank, n_gpus, experiment_dir, pretrainG, pretrainD, pitch_guidance, custom_total_epoch, custom_save_every_weights, config, device, model_author, vocoder, checkpointing):
|
|
global global_step
|
|
|
|
if rank == 0: writer_eval = SummaryWriter(log_dir=os.path.join(experiment_dir, "eval"))
|
|
else: writer_eval = None
|
|
|
|
dist.init_process_group(backend="gloo", init_method="env://", world_size=n_gpus, rank=rank)
|
|
torch.manual_seed(config.train.seed)
|
|
if torch.cuda.is_available(): torch.cuda.set_device(rank)
|
|
|
|
train_dataset = TextAudioLoaderMultiNSFsid(config.data)
|
|
train_loader = tdata.DataLoader(train_dataset, num_workers=4, shuffle=False, pin_memory=True, collate_fn=TextAudioCollateMultiNSFsid(), batch_sampler=DistributedBucketSampler(train_dataset, batch_size * n_gpus, [100, 200, 300, 400, 500, 600, 700, 800, 900], num_replicas=n_gpus, rank=rank, shuffle=True), persistent_workers=True, prefetch_factor=8)
|
|
|
|
net_g, net_d = Synthesizer(config.data.filter_length // 2 + 1, config.train.segment_size // config.data.hop_length, **config.model, use_f0=pitch_guidance, sr=sample_rate, vocoder=vocoder, checkpointing=checkpointing), MultiPeriodDiscriminator(version, config.model.use_spectral_norm, checkpointing=checkpointing)
|
|
net_g, net_d = (net_g.cuda(rank), net_d.cuda(rank)) if torch.cuda.is_available() else (net_g.to(device), net_d.to(device))
|
|
optim_g, optim_d = torch.optim.AdamW(net_g.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps), torch.optim.AdamW(net_d.parameters(), config.train.learning_rate, betas=config.train.betas, eps=config.train.eps)
|
|
net_g, net_d = (DDP(net_g, device_ids=[rank]), DDP(net_d, device_ids=[rank])) if torch.cuda.is_available() else (DDP(net_g), DDP(net_d))
|
|
|
|
try:
|
|
logger.info(translations["start_training"])
|
|
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "D_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "D_*.pth")), net_d, optim_d)
|
|
_, _, _, epoch_str = load_checkpoint((os.path.join(experiment_dir, "G_latest.pth") if save_only_latest else latest_checkpoint_path(experiment_dir, "G_*.pth")), net_g, optim_g)
|
|
epoch_str += 1
|
|
global_step = (epoch_str - 1) * len(train_loader)
|
|
except:
|
|
epoch_str, global_step = 1, 0
|
|
|
|
if pretrainG != "" and pretrainG != "None":
|
|
if rank == 0:
|
|
verify_checkpoint_shapes(pretrainG, net_g)
|
|
logger.info(translations["import_pretrain"].format(dg="G", pretrain=pretrainG))
|
|
|
|
if hasattr(net_g, "module"): net_g.module.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"])
|
|
else: net_g.load_state_dict(torch.load(pretrainG, map_location="cpu")["model"])
|
|
else: logger.warning(translations["not_using_pretrain"].format(dg="G"))
|
|
|
|
if pretrainD != "" and pretrainD != "None":
|
|
if rank == 0:
|
|
verify_checkpoint_shapes(pretrainD, net_d)
|
|
logger.info(translations["import_pretrain"].format(dg="D", pretrain=pretrainD))
|
|
|
|
if hasattr(net_d, "module"): net_d.module.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"])
|
|
else: net_d.load_state_dict(torch.load(pretrainD, map_location="cpu")["model"])
|
|
else: logger.warning(translations["not_using_pretrain"].format(dg="D"))
|
|
|
|
scheduler_g, scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=config.train.lr_decay, last_epoch=epoch_str - 2), torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=config.train.lr_decay, last_epoch=epoch_str - 2)
|
|
optim_d.step(); optim_g.step()
|
|
|
|
scaler = GradScaler(enabled=False)
|
|
cache = []
|
|
|
|
for info in train_loader:
|
|
phone, phone_lengths, pitch, pitchf, _, _, _, _, sid = info
|
|
reference = (phone.cuda(rank, non_blocking=True), phone_lengths.cuda(rank, non_blocking=True), (pitch.cuda(rank, non_blocking=True) if pitch_guidance else None), (pitchf.cuda(rank, non_blocking=True) if pitch_guidance else None), sid.cuda(rank, non_blocking=True)) if device.type == "cuda" else (phone.to(device), phone_lengths.to(device), (pitch.to(device) if pitch_guidance else None), (pitchf.to(device) if pitch_guidance else None), sid.to(device))
|
|
break
|
|
|
|
for epoch in range(epoch_str, total_epoch + 1):
|
|
train_and_evaluate(rank, epoch, config, [net_g, net_d], [optim_g, optim_d], scaler, train_loader, writer_eval, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder)
|
|
scheduler_g.step(); scheduler_d.step()
|
|
|
|
def train_and_evaluate(rank, epoch, hps, nets, optims, scaler, train_loader, writer, cache, custom_save_every_weights, custom_total_epoch, device, reference, model_author, vocoder):
|
|
global global_step, lowest_value, loss_disc, consecutive_increases_gen, consecutive_increases_disc
|
|
|
|
if epoch == 1:
|
|
lowest_value = {"step": 0, "value": float("inf"), "epoch": 0}
|
|
last_loss_gen_all, consecutive_increases_gen, consecutive_increases_disc = 0.0, 0, 0
|
|
|
|
net_g, net_d = nets
|
|
optim_g, optim_d = optims
|
|
train_loader.batch_sampler.set_epoch(epoch)
|
|
|
|
net_g.train(); net_d.train()
|
|
|
|
if device.type == "cuda" and cache_data_in_gpu:
|
|
data_iterator = cache
|
|
if cache == []:
|
|
for batch_idx, info in enumerate(train_loader):
|
|
cache.append((batch_idx, [tensor.cuda(rank, non_blocking=True) for tensor in info]))
|
|
else: shuffle(cache)
|
|
else: data_iterator = enumerate(train_loader)
|
|
|
|
epoch_recorder = EpochRecorder()
|
|
|
|
with tqdm(total=len(train_loader), leave=False) as pbar:
|
|
for batch_idx, info in data_iterator:
|
|
if device.type == "cuda" and not cache_data_in_gpu: info = [tensor.cuda(rank, non_blocking=True) for tensor in info]
|
|
elif device.type != "cuda": info = [tensor.to(device) for tensor in info]
|
|
|
|
phone, phone_lengths, pitch, pitchf, spec, spec_lengths, wave, _, sid = info
|
|
pitch = pitch if pitch_guidance else None
|
|
pitchf = pitchf if pitch_guidance else None
|
|
|
|
with autocast(enabled=False):
|
|
y_hat, ids_slice, _, z_mask, (_, z_p, m_p, logs_p, _, logs_q) = net_g(phone, phone_lengths, pitch, pitchf, spec, spec_lengths, sid)
|
|
mel = spec_to_mel_torch(spec, config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.mel_fmin, config.data.mel_fmax)
|
|
y_mel = slice_segments(mel, ids_slice, config.train.segment_size // config.data.hop_length, dim=3)
|
|
|
|
with autocast(enabled=False):
|
|
y_hat_mel = mel_spectrogram_torch(y_hat.float().squeeze(1), config.data.filter_length, config.data.n_mel_channels, config.data.sample_rate, config.data.hop_length, config.data.win_length, config.data.mel_fmin, config.data.mel_fmax)
|
|
|
|
wave = slice_segments(wave, ids_slice * config.data.hop_length, config.train.segment_size, dim=3)
|
|
y_d_hat_r, y_d_hat_g, _, _ = net_d(wave, y_hat.detach())
|
|
|
|
with autocast(enabled=False):
|
|
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
|
|
|
|
optim_d.zero_grad()
|
|
scaler.scale(loss_disc).backward()
|
|
scaler.unscale_(optim_d)
|
|
grad_norm_d = clip_grad_value(net_d.parameters(), None)
|
|
scaler.step(optim_d)
|
|
|
|
with autocast(enabled=False):
|
|
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(wave, y_hat)
|
|
with autocast(enabled=False):
|
|
loss_mel = F.l1_loss(y_mel, y_hat_mel) * config.train.c_mel
|
|
loss_kl = (kl_loss(z_p, logs_q, m_p, logs_p, z_mask) * config.train.c_kl)
|
|
loss_fm = feature_loss(fmap_r, fmap_g)
|
|
loss_gen, losses_gen = generator_loss(y_d_hat_g)
|
|
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
|
|
if loss_gen_all < lowest_value["value"]:
|
|
lowest_value["value"] = loss_gen_all
|
|
lowest_value["step"] = global_step
|
|
lowest_value["epoch"] = epoch
|
|
if epoch > lowest_value["epoch"]: logger.warning(translations["training_warning"])
|
|
|
|
optim_g.zero_grad()
|
|
scaler.scale(loss_gen_all).backward()
|
|
scaler.unscale_(optim_g)
|
|
grad_norm_g = clip_grad_value(net_g.parameters(), None)
|
|
scaler.step(optim_g)
|
|
scaler.update()
|
|
|
|
if rank == 0 and global_step % config.train.log_interval == 0:
|
|
if loss_mel > 75: loss_mel = 75
|
|
if loss_kl > 9: loss_kl = 9
|
|
|
|
scalar_dict = {"loss/g/total": loss_gen_all, "loss/d/total": loss_disc, "learning_rate": optim_g.param_groups[0]["lr"], "grad/norm_d": grad_norm_d, "grad/norm_g": grad_norm_g, "loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl}
|
|
scalar_dict.update({f"loss/g/{i}": v for i, v in enumerate(losses_gen)})
|
|
scalar_dict.update({f"loss/d_r/{i}": v for i, v in enumerate(losses_disc_r)})
|
|
scalar_dict.update({f"loss/d_g/{i}": v for i, v in enumerate(losses_disc_g)})
|
|
|
|
with torch.no_grad():
|
|
o, *_ = net_g.module.infer(*reference) if hasattr(net_g, "module") else net_g.infer(*reference)
|
|
|
|
summarize(writer=writer, global_step=global_step, images={"slice/mel_org": plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()), "slice/mel_gen": plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()), "all/mel": plot_spectrogram_to_numpy(mel[0].data.cpu().numpy())}, scalars=scalar_dict, audios={f"gen/audio_{global_step:07d}": o[0, :, :]}, audio_sample_rate=config.data.sample_rate)
|
|
|
|
global_step += 1
|
|
pbar.update(1)
|
|
|
|
def check_overtraining(smoothed_loss_history, threshold, epsilon=0.004):
|
|
if len(smoothed_loss_history) < threshold + 1: return False
|
|
for i in range(-threshold, -1):
|
|
if smoothed_loss_history[i + 1] > smoothed_loss_history[i]: return True
|
|
if abs(smoothed_loss_history[i + 1] - smoothed_loss_history[i]) >= epsilon: return False
|
|
return True
|
|
|
|
def update_exponential_moving_average(smoothed_loss_history, new_value, smoothing=0.987):
|
|
smoothed_value = new_value if not smoothed_loss_history else (smoothing * smoothed_loss_history[-1] + (1 - smoothing) * new_value)
|
|
smoothed_loss_history.append(smoothed_value)
|
|
return smoothed_value
|
|
|
|
def save_to_json(file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history):
|
|
with open(file_path, "w") as f:
|
|
json.dump({"loss_disc_history": loss_disc_history, "smoothed_loss_disc_history": smoothed_loss_disc_history, "loss_gen_history": loss_gen_history, "smoothed_loss_gen_history": smoothed_loss_gen_history}, f)
|
|
|
|
model_add, model_del = [], []
|
|
done = False
|
|
|
|
if rank == 0:
|
|
if epoch % save_every_epoch == False:
|
|
checkpoint_suffix = f"{'latest' if save_only_latest else global_step}.pth"
|
|
save_checkpoint(net_g, optim_g, config.train.learning_rate, epoch, os.path.join(experiment_dir, "G_" + checkpoint_suffix))
|
|
save_checkpoint(net_d, optim_d, config.train.learning_rate, epoch, os.path.join(experiment_dir, "D_" + checkpoint_suffix))
|
|
if custom_save_every_weights: model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth"))
|
|
|
|
if overtraining_detector and epoch > 1:
|
|
current_loss_disc = float(loss_disc)
|
|
loss_disc_history.append(current_loss_disc)
|
|
smoothed_value_disc = update_exponential_moving_average(smoothed_loss_disc_history, current_loss_disc)
|
|
is_overtraining_disc = check_overtraining(smoothed_loss_disc_history, overtraining_threshold * 2)
|
|
|
|
if is_overtraining_disc: consecutive_increases_disc += 1
|
|
else: consecutive_increases_disc = 0
|
|
|
|
current_loss_gen = float(lowest_value["value"])
|
|
loss_gen_history.append(current_loss_gen)
|
|
smoothed_value_gen = update_exponential_moving_average(smoothed_loss_gen_history, current_loss_gen)
|
|
is_overtraining_gen = check_overtraining(smoothed_loss_gen_history, overtraining_threshold, 0.01)
|
|
|
|
if is_overtraining_gen: consecutive_increases_gen += 1
|
|
else: consecutive_increases_gen = 0
|
|
|
|
if epoch % save_every_epoch == 0: save_to_json(training_file_path, loss_disc_history, smoothed_loss_disc_history, loss_gen_history, smoothed_loss_gen_history)
|
|
|
|
if (is_overtraining_gen and consecutive_increases_gen == overtraining_threshold or is_overtraining_disc and consecutive_increases_disc == (overtraining_threshold * 2)):
|
|
logger.info(translations["overtraining_find"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
|
|
done = True
|
|
else:
|
|
logger.info(translations["best_epoch"].format(epoch=epoch, smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
|
|
for file in glob.glob(os.path.join("assets", "weights", f"{model_name}_*e_*s_best_epoch.pth")):
|
|
model_del.append(file)
|
|
|
|
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s_best_epoch.pth"))
|
|
|
|
if epoch >= custom_total_epoch:
|
|
logger.info(translations["success_training"].format(epoch=epoch, global_step=global_step, loss_gen_all=round(loss_gen_all.item(), 3)))
|
|
logger.info(translations["training_info"].format(lowest_value_rounded=round(float(lowest_value["value"]), 3), lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
|
|
|
|
pid_file_path = os.path.join(experiment_dir, "config.json")
|
|
with open(pid_file_path, "r") as pid_file:
|
|
pid_data = json.load(pid_file)
|
|
|
|
with open(pid_file_path, "w") as pid_file:
|
|
pid_data.pop("process_pids", None)
|
|
json.dump(pid_data, pid_file, indent=4)
|
|
|
|
model_add.append(os.path.join("assets", "weights", f"{model_name}_{epoch}e_{global_step}s.pth"))
|
|
done = True
|
|
|
|
for m in model_del:
|
|
os.remove(m)
|
|
|
|
if model_add:
|
|
ckpt = (net_g.module.state_dict() if hasattr(net_g, "module") else net_g.state_dict())
|
|
for m in model_add:
|
|
extract_model(ckpt=ckpt, sr=sample_rate, pitch_guidance=pitch_guidance == True, name=model_name, model_path=m, epoch=epoch, step=global_step, version=version, hps=hps, model_author=model_author, vocoder=vocoder)
|
|
|
|
lowest_value_rounded = round(float(lowest_value["value"]), 3)
|
|
|
|
if epoch > 1 and overtraining_detector: logger.info(translations["model_training_info"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step'], remaining_epochs_gen=(overtraining_threshold - consecutive_increases_gen), remaining_epochs_disc=((overtraining_threshold * 2) - consecutive_increases_disc), smoothed_value_gen=f"{smoothed_value_gen:.3f}", smoothed_value_disc=f"{smoothed_value_disc:.3f}"))
|
|
elif epoch > 1 and overtraining_detector == False: logger.info(translations["model_training_info_2"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record(), lowest_value_rounded=lowest_value_rounded, lowest_value_epoch=lowest_value['epoch'], lowest_value_step=lowest_value['step']))
|
|
else: logger.info(translations["model_training_info_3"].format(model_name=model_name, epoch=epoch, global_step=global_step, epoch_recorder=epoch_recorder.record()))
|
|
|
|
last_loss_gen_all = loss_gen_all
|
|
if done: os._exit(0)
|
|
|
|
if __name__ == "__main__":
|
|
torch.multiprocessing.set_start_method("spawn")
|
|
try:
|
|
main()
|
|
except Exception as e:
|
|
logger.error(f"{translations['training_error']} {e}")
|
|
import traceback
|
|
logger.debug(traceback.format_exc()) |