AnhP's picture
Upload 82 files
e4d8df5 verified
raw
history blame
19.4 kB
import os
import sys
import time
import yaml
import torch
import codecs
import hashlib
import logging
import platform
import warnings
import requests
import onnxruntime
from importlib import metadata, import_module
now_dir = os.getcwd()
sys.path.append(now_dir)
from main.configs.config import Config
translations = Config().translations
class Separator:
def __init__(self, logger=logging.getLogger(__name__), log_level=logging.INFO, log_formatter=None, model_file_dir="assets/models/uvr5", output_dir=None, output_format="wav", output_bitrate=None, normalization_threshold=0.9, output_single_stem=None, invert_using_spec=False, sample_rate=44100, mdx_params={"hop_length": 1024, "segment_size": 256, "overlap": 0.25, "batch_size": 1, "enable_denoise": False}, demucs_params={"segment_size": "Default", "shifts": 2, "overlap": 0.25, "segments_enabled": True}):
self.logger = logger
self.log_level = log_level
self.log_formatter = log_formatter
self.log_handler = logging.StreamHandler()
if self.log_formatter is None: self.log_formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(module)s - %(message)s")
self.log_handler.setFormatter(self.log_formatter)
if not self.logger.hasHandlers(): self.logger.addHandler(self.log_handler)
if log_level > logging.DEBUG: warnings.filterwarnings("ignore")
self.logger.info(translations["separator_info"].format(output_dir=output_dir, output_format=output_format))
self.model_file_dir = model_file_dir
if output_dir is None:
output_dir = now_dir
self.logger.info(translations["output_dir_is_none"])
self.output_dir = output_dir
os.makedirs(self.model_file_dir, exist_ok=True)
os.makedirs(self.output_dir, exist_ok=True)
self.output_format = output_format
self.output_bitrate = output_bitrate
if self.output_format is None: self.output_format = "wav"
self.normalization_threshold = normalization_threshold
if normalization_threshold <= 0 or normalization_threshold > 1: raise ValueError(translations[">0or=1"])
self.output_single_stem = output_single_stem
if output_single_stem is not None: self.logger.debug(translations["output_single"].format(output_single_stem=output_single_stem))
self.invert_using_spec = invert_using_spec
if self.invert_using_spec: self.logger.debug(translations["step2"])
self.sample_rate = int(sample_rate)
self.arch_specific_params = {"MDX": mdx_params, "Demucs": demucs_params}
self.torch_device = None
self.torch_device_cpu = None
self.torch_device_mps = None
self.onnx_execution_provider = None
self.model_instance = None
self.model_is_uvr_vip = False
self.model_friendly_name = None
self.setup_accelerated_inferencing_device()
def setup_accelerated_inferencing_device(self):
system_info = self.get_system_info()
self.log_onnxruntime_packages()
self.setup_torch_device(system_info)
def get_system_info(self):
os_name = platform.system()
os_version = platform.version()
self.logger.info(f"{translations['os']}: {os_name} {os_version}")
system_info = platform.uname()
self.logger.info(translations["platform_info"].format(system_info=system_info, node=system_info.node, release=system_info.release, machine=system_info.machine, processor=system_info.processor))
python_version = platform.python_version()
self.logger.info(f"{translations['name_ver'].format(name='python')}: {python_version}")
pytorch_version = torch.__version__
self.logger.info(f"{translations['name_ver'].format(name='pytorch')}: {pytorch_version}")
return system_info
def log_onnxruntime_packages(self):
onnxruntime_gpu_package = self.get_package_distribution("onnxruntime-gpu")
onnxruntime_cpu_package = self.get_package_distribution("onnxruntime")
if onnxruntime_gpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='GPU')}: {onnxruntime_gpu_package.version}")
if onnxruntime_cpu_package is not None: self.logger.info(f"{translations['install_onnx'].format(pu='CPU')}: {onnxruntime_cpu_package.version}")
def setup_torch_device(self, system_info):
hardware_acceleration_enabled = False
ort_providers = onnxruntime.get_available_providers()
self.torch_device_cpu = torch.device("cpu")
if torch.cuda.is_available():
self.configure_cuda(ort_providers)
hardware_acceleration_enabled = True
elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available() and system_info.processor == "arm":
self.configure_mps(ort_providers)
hardware_acceleration_enabled = True
if not hardware_acceleration_enabled:
self.logger.info(translations["running_in_cpu"])
self.torch_device = self.torch_device_cpu
self.onnx_execution_provider = ["CPUExecutionProvider"]
def configure_cuda(self, ort_providers):
self.logger.info(translations["running_in_cuda"])
self.torch_device = torch.device("cuda")
if "CUDAExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CUDAExecutionProvider'))
self.onnx_execution_provider = ["CUDAExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CUDAExecutionProvider'))
def configure_mps(self, ort_providers):
self.logger.info(translations["set_torch_mps"])
self.torch_device_mps = torch.device("mps")
self.torch_device = self.torch_device_mps
if "CoreMLExecutionProvider" in ort_providers:
self.logger.info(translations["onnx_have"].format(have='CoreMLExecutionProvider'))
self.onnx_execution_provider = ["CoreMLExecutionProvider"]
else: self.logger.warning(translations["onnx_not_have"].format(have='CoreMLExecutionProvider'))
def get_package_distribution(self, package_name):
try:
return metadata.distribution(package_name)
except metadata.PackageNotFoundError:
self.logger.debug(translations["python_not_install"].format(package_name=package_name))
return None
def get_model_hash(self, model_path):
self.logger.debug(translations["hash"].format(model_path=model_path))
try:
with open(model_path, "rb") as f:
f.seek(-10000 * 1024, 2)
return hashlib.md5(f.read()).hexdigest()
except IOError as e:
self.logger.error(translations["ioerror"].format(e=e))
return hashlib.md5(open(model_path, "rb").read()).hexdigest()
def download_file_if_not_exists(self, url, output_path):
if os.path.isfile(output_path):
self.logger.debug(translations["cancel_download"].format(output_path=output_path))
return
self.logger.debug(translations["download_model"].format(url=url, output_path=output_path))
response = requests.get(url, stream=True, timeout=300)
if response.status_code == 200:
from tqdm import tqdm
progress_bar = tqdm(total=int(response.headers.get("content-length", 0)), ncols=100, unit="byte")
with open(output_path, "wb") as f:
for chunk in response.iter_content(chunk_size=8192):
progress_bar.update(len(chunk))
f.write(chunk)
progress_bar.close()
else: raise RuntimeError(translations["download_error"].format(url=url, status_code=response.status_code))
def print_uvr_vip_message(self):
if self.model_is_uvr_vip:
self.logger.warning(translations["vip_model"].format(model_friendly_name=self.model_friendly_name))
self.logger.warning(translations["vip_print"])
def list_supported_model_files(self):
response = requests.get(codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/hie_zbqryf.wfba", "rot13"))
response.raise_for_status()
model_downloads_list = response.json()
self.logger.debug(translations["load_download_json"])
return {"MDX": {**model_downloads_list["mdx_download_list"], **model_downloads_list["mdx_download_vip_list"]}, "Demucs": {key: value for key, value in model_downloads_list["demucs_download_list"].items() if key.startswith("Demucs v4")}}
def download_model_files(self, model_filename):
model_path = os.path.join(self.model_file_dir, model_filename)
supported_model_files_grouped = self.list_supported_model_files()
yaml_config_filename = None
self.logger.debug(translations["search_model"].format(model_filename=model_filename))
for model_type, model_list in supported_model_files_grouped.items():
for model_friendly_name, model_download_list in model_list.items():
self.model_is_uvr_vip = "VIP" in model_friendly_name
model_repo_url_prefix = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/erfbyir/znva/hie5_zbqryf", "rot13")
if isinstance(model_download_list, str) and model_download_list == model_filename:
self.logger.debug(translations["single_model"].format(model_friendly_name=model_friendly_name))
self.model_friendly_name = model_friendly_name
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/MDX/{model_filename}", model_path)
except RuntimeError:
self.logger.warning(translations["not_found_model"])
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{model_filename}", model_path)
self.print_uvr_vip_message()
self.logger.debug(translations["single_model_path"].format(model_path=model_path))
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
elif isinstance(model_download_list, dict):
this_model_matches_input_filename = False
for file_name, file_url in model_download_list.items():
if file_name == model_filename or file_url == model_filename:
self.logger.debug(translations["find_model"].format(model_filename=model_filename, model_friendly_name=model_friendly_name))
this_model_matches_input_filename = True
if this_model_matches_input_filename:
self.logger.debug(translations["find_models"].format(model_friendly_name=model_friendly_name))
self.model_friendly_name = model_friendly_name
self.print_uvr_vip_message()
for config_key, config_value in model_download_list.items():
self.logger.debug(f"{translations['find_path']}: {config_key} -> {config_value}")
if config_value.startswith("http"): self.download_file_if_not_exists(config_value, os.path.join(self.model_file_dir, config_key))
elif config_key.endswith(".ckpt"):
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_key}", os.path.join(self.model_file_dir, config_key))
except RuntimeError:
self.logger.warning(translations["not_found_model_warehouse"])
if model_filename.endswith(".yaml"):
self.logger.warning(translations["yaml_warning"].format(model_filename=model_filename))
self.logger.warning(translations["yaml_warning_2"].format(config_key=config_key))
self.logger.warning(translations["yaml_warning_3"])
model_filename = config_key
model_path = os.path.join(self.model_file_dir, f"{model_filename}")
yaml_config_filename = config_value
yaml_config_filepath = os.path.join(self.model_file_dir, yaml_config_filename)
try:
self.download_file_if_not_exists(f"{model_repo_url_prefix}/mdx_c_configs/{yaml_config_filename}", yaml_config_filepath)
except RuntimeError:
self.logger.debug(translations["yaml_debug"])
else: self.download_file_if_not_exists(f"{model_repo_url_prefix}/Demucs/{config_value}", os.path.join(self.model_file_dir, config_value))
self.logger.debug(translations["download_model_friendly"].format(model_friendly_name=model_friendly_name, model_path=model_path))
return model_filename, model_type, model_friendly_name, model_path, yaml_config_filename
raise ValueError(translations["not_found_model_2"].format(model_filename=model_filename))
def load_model_data_from_yaml(self, yaml_config_filename):
model_data_yaml_filepath = os.path.join(self.model_file_dir, yaml_config_filename) if not os.path.exists(yaml_config_filename) else yaml_config_filename
self.logger.debug(translations["load_yaml"].format(model_data_yaml_filepath=model_data_yaml_filepath))
model_data = yaml.load(open(model_data_yaml_filepath, encoding="utf-8"), Loader=yaml.FullLoader)
self.logger.debug(translations["load_yaml_2"].format(model_data=model_data))
if "roformer" in model_data_yaml_filepath: model_data["is_roformer"] = True
return model_data
def load_model_data_using_hash(self, model_path):
self.logger.debug(translations["hash_md5"])
model_hash = self.get_model_hash(model_path)
self.logger.debug(translations["model_hash"].format(model_path=model_path, model_hash=model_hash))
mdx_model_data_path = codecs.decode("uggcf://uhttvatsnpr.pb/NauC/Ivrganzrfr-EIP-Cebwrpg/enj/znva/wfba/zbqry_qngn.wfba", "rot13")
self.logger.debug(translations["mdx_data"].format(mdx_model_data_path=mdx_model_data_path))
response = requests.get(mdx_model_data_path)
response.raise_for_status()
mdx_model_data_object = response.json()
self.logger.debug(translations["load_mdx"])
if model_hash in mdx_model_data_object: model_data = mdx_model_data_object[model_hash]
else: raise ValueError(translations["model_not_support"].format(model_hash=model_hash))
self.logger.debug(translations["uvr_json"].format(model_hash=model_hash, model_data=model_data))
return model_data
def load_model(self, model_filename):
self.logger.info(translations["loading_model"].format(model_filename=model_filename))
load_model_start_time = time.perf_counter()
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
self.logger.debug(translations["download_model_friendly_2"].format(model_friendly_name=model_friendly_name, model_path=model_path))
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
common_params = {"logger": self.logger, "log_level": self.log_level, "torch_device": self.torch_device, "torch_device_cpu": self.torch_device_cpu, "torch_device_mps": self.torch_device_mps, "onnx_execution_provider": self.onnx_execution_provider, "model_name": model_filename.split(".")[0], "model_path": model_path, "model_data": self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path), "output_format": self.output_format, "output_bitrate": self.output_bitrate, "output_dir": self.output_dir, "normalization_threshold": self.normalization_threshold, "output_single_stem": self.output_single_stem, "invert_using_spec": self.invert_using_spec, "sample_rate": self.sample_rate}
separator_classes = {"MDX": "mdx_separator.MDXSeparator", "Demucs": "demucs_separator.DemucsSeparator"}
if model_type not in self.arch_specific_params or model_type not in separator_classes: raise ValueError(translations["model_type_not_support"].format(model_type=model_type))
if model_type == "Demucs" and sys.version_info < (3, 10): raise Exception(translations["demucs_not_support_python<3.10"])
self.logger.debug(f"{translations['import_module']} {model_type}: {separator_classes[model_type]}")
module_name, class_name = separator_classes[model_type].split(".")
separator_class = getattr(import_module(f"main.library.architectures.{module_name}"), class_name)
self.logger.debug(f"{translations['initialization']} {model_type}: {separator_class}")
self.model_instance = separator_class(common_config=common_params, arch_config=self.arch_specific_params[model_type])
self.logger.debug(translations["loading_model_success"])
self.logger.info(f"{translations['loading_model_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - load_model_start_time)))}")
def separate(self, audio_file_path):
self.logger.info(f"{translations['starting_separator']}: {audio_file_path}")
separate_start_time = time.perf_counter()
self.logger.debug(translations["normalization"].format(normalization_threshold=self.normalization_threshold))
output_files = self.model_instance.separate(audio_file_path)
self.model_instance.clear_gpu_cache()
self.model_instance.clear_file_specific_paths()
self.print_uvr_vip_message()
self.logger.debug(translations["separator_success_3"])
self.logger.info(f"{translations['separator_duration']}: {time.strftime('%H:%M:%S', time.gmtime(int(time.perf_counter() - separate_start_time)))}")
return output_files
def download_model_and_data(self, model_filename):
self.logger.info(translations["loading_separator_model"].format(model_filename=model_filename))
model_filename, model_type, model_friendly_name, model_path, yaml_config_filename = self.download_model_files(model_filename)
if model_path.lower().endswith(".yaml"): yaml_config_filename = model_path
self.logger.info(translations["downloading_model"].format(model_type=model_type, model_friendly_name=model_friendly_name, model_path=model_path, model_data_dict_size=len(self.load_model_data_from_yaml(yaml_config_filename) if yaml_config_filename is not None else self.load_model_data_using_hash(model_path))))