File size: 7,122 Bytes
cad1744
 
ddbd144
 
 
cad1744
ddbd144
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cad1744
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import gradio as gr

import torch
import torch.nn as nn
import torch.nn.functional as F

batch_size = 64 # how many independent sequences will we process in parallel?
block_size = 256 # what is the maximum context length for predictions?
max_iters = 5000
eval_interval = 500
learning_rate = 3e-4
device = 'cuda' if torch.cuda.is_available() else 'cpu'
print(f"The code is running on {device} : GPU={torch.cuda.get_device_name(0)}")
eval_iters = 200
n_embd = 384
n_head = 6
n_layer = 6
dropout = 0.2


torch.manual_seed(1337)

# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt
with open('input.txt', 'r', encoding='utf-8') as f:
    text = f.read()

# here are all the unique characters that occur in this text
chars = sorted(list(set(text)))
vocab_size = len(chars)
# create a mapping from characters to integers
stoi = { ch:i for i,ch in enumerate(chars) }
itos = { i:ch for i,ch in enumerate(chars) }
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string

        
class Head(nn.Module):
    """ one head of self-attention """
    
    def __init__(self, head_size):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) # create lower triangular matrix
        
        self.dropout = nn.Dropout(dropout)
    
    def forward(self, x):
        B,T,C = x.shape
        k = self.key(x) # B, T, C
        q = self.query(x) # B, T, C
        # compute attention scores = ("affinities")
        wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)
        #wei = wei.masked_fill(self.tril[:T, :T]==0, float('-inf')) # (B, T, T)
        tril = torch.tril(torch.ones(T, T)).to(device)
        wei = wei.masked_fill(tril == 0, float('-inf'))
        wei = F.softmax(wei, dim=-1) # (B, T, T)
        wei = self.dropout(wei)
        # perform the weighted aggregation of the values
        v = self.value(x) # (B, T, C)
        out = wei @ v
        return out
        
        
class MultiHeadAttention(nn.Module):
    """ multiple heads of self-attention in parallel """
    
    def __init__(self, num_heads, head_size):
        super().__init__()
        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)
    
    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1) # h(x) call forward function is Head class
        out = self.dropout(self.proj(out))
        return out

class FeedForward(nn.Module): # per token level, every token does this independently, its allowing tokens to think on data provided by self attention
    """ a simple linear layer followed by a non-linearity"""
    
    def __init__(self, n_embd):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd), # we multiply by 4 cause the paper says so 
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout)
        )
    
    def forward(self, x):
        return self.net(x)

class Block(nn.Module):
    """Transformer block: communication followed by computation """
    
    def __init__(self, n_embed, n_head):
        # n_embd: embedding dimension, n_head: the number of heads we'd like
        super().__init__()
        head_size = n_embd // n_head
        self.sa = MultiHeadAttention(n_head, head_size)
        self.ffwd = FeedForward(n_embd)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)
        
    def forward(self, x):
        x = x + self.sa(self.ln1(x)) # x = x + self .. is residual connection
        x = x + self.ffwd(self.ln2(x))
        return x
        

class BigramLanguageModel(nn.Module):

    def __init__(self):
        super().__init__()
        # each token directly reads off the logits for the next token from a lookup table
        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)
        self.position_embedding_table = nn.Embedding(block_size, n_embd) # so each position from 0 to block_size - 1 will also get its own embedding vector
        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])
        self.ln_f = nn.LayerNorm(n_embd) # final layer Norm
        self.lm_head = nn.Linear(n_embd, vocab_size)

    def forward(self, idx, targets=None):
        B, T = idx.shape
        
        # idx and targets are both (B,T) tensor of integers
        tok_emb = self.token_embedding_table(idx) # (B,T,C=n_embed)
        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C)
        # pos_emb tensor will be a (block_size, n_emb) tensor # block_size is max context length for predictions
        # each row represents the embedding vector for the corresponding position
        # so 0th row will represent the vector for 0th position
        x = tok_emb + pos_emb # (B, T, C)
        x = self.blocks(x) # (B, T, C)
        logits = self.lm_head(x) # (B, T, C=vocab_size)

        if targets is None:
            loss = None
        else:
            B, T, C = logits.shape
            logits = logits.view(B*T, C)
            targets = targets.view(B*T)
            loss = F.cross_entropy(logits, targets)

        return logits, loss

    def generate(self, idx, max_new_tokens):
        # idx is (B, T) array of indices in the current context
        for _ in range(max_new_tokens):
            # crop idx to the last block_size tokens
            idx_cond = idx[:, -block_size:]
            # get the predictions
            logits, loss = self.forward(idx_cond)
            # focus only on the last time step
            logits = logits[:, -1, :] # becomes (B, C)
            # apply softmax to get probabilities
            probs = F.softmax(logits, dim=-1) # (B, C)
            # sample from the distribution
            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
            # append sampled index to the running sequence
            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
        return idx        


# Instantiate the model
model = BigramLanguageModel()

# Specify the path to the pre-trained model checkpoint
checkpoint_path = 'checkpoint.pth'

# Load the model checkpoint
checkpoint = torch.load(checkpoint_path)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
model.to(device)


# generate from the model
context = torch.zeros((1, 1), dtype=torch.long, device=device)

def greet(start_character, number_of_tokens):
    context[0][0] = encode(start_character)
    max_new_tokens = number_of_tokens
    return decode(model.generate(context, max_new_tokens=max_new_tokens)[0].tolist())

iface = gr.Interface(fn=greet, inputs=["text", "number"], outputs="text")
iface.launch()