Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
batch_size = 64 # how many independent sequences will we process in parallel? | |
block_size = 256 # what is the maximum context length for predictions? | |
max_iters = 5000 | |
eval_interval = 500 | |
learning_rate = 3e-4 | |
device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
print(f"The code is running on {device} : GPU={torch.cuda.get_device_name(0)}") | |
eval_iters = 200 | |
n_embd = 384 | |
n_head = 6 | |
n_layer = 6 | |
dropout = 0.2 | |
torch.manual_seed(1337) | |
# wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt | |
with open('input.txt', 'r', encoding='utf-8') as f: | |
text = f.read() | |
# here are all the unique characters that occur in this text | |
chars = sorted(list(set(text))) | |
vocab_size = len(chars) | |
# create a mapping from characters to integers | |
stoi = { ch:i for i,ch in enumerate(chars) } | |
itos = { i:ch for i,ch in enumerate(chars) } | |
encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers | |
decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string | |
class Head(nn.Module): | |
""" one head of self-attention """ | |
def __init__(self, head_size): | |
super().__init__() | |
self.key = nn.Linear(n_embd, head_size, bias=False) | |
self.query = nn.Linear(n_embd, head_size, bias=False) | |
self.value = nn.Linear(n_embd, head_size, bias=False) | |
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size))) # create lower triangular matrix | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
B,T,C = x.shape | |
k = self.key(x) # B, T, C | |
q = self.query(x) # B, T, C | |
# compute attention scores = ("affinities") | |
wei = q @ k.transpose(-2, -1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T) | |
#wei = wei.masked_fill(self.tril[:T, :T]==0, float('-inf')) # (B, T, T) | |
tril = torch.tril(torch.ones(T, T)).to(device) | |
wei = wei.masked_fill(tril == 0, float('-inf')) | |
wei = F.softmax(wei, dim=-1) # (B, T, T) | |
wei = self.dropout(wei) | |
# perform the weighted aggregation of the values | |
v = self.value(x) # (B, T, C) | |
out = wei @ v | |
return out | |
class MultiHeadAttention(nn.Module): | |
""" multiple heads of self-attention in parallel """ | |
def __init__(self, num_heads, head_size): | |
super().__init__() | |
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]) | |
self.proj = nn.Linear(n_embd, n_embd) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
out = torch.cat([h(x) for h in self.heads], dim=-1) # h(x) call forward function is Head class | |
out = self.dropout(self.proj(out)) | |
return out | |
class FeedForward(nn.Module): # per token level, every token does this independently, its allowing tokens to think on data provided by self attention | |
""" a simple linear layer followed by a non-linearity""" | |
def __init__(self, n_embd): | |
super().__init__() | |
self.net = nn.Sequential( | |
nn.Linear(n_embd, 4 * n_embd), # we multiply by 4 cause the paper says so | |
nn.ReLU(), | |
nn.Linear(4 * n_embd, n_embd), | |
nn.Dropout(dropout) | |
) | |
def forward(self, x): | |
return self.net(x) | |
class Block(nn.Module): | |
"""Transformer block: communication followed by computation """ | |
def __init__(self, n_embed, n_head): | |
# n_embd: embedding dimension, n_head: the number of heads we'd like | |
super().__init__() | |
head_size = n_embd // n_head | |
self.sa = MultiHeadAttention(n_head, head_size) | |
self.ffwd = FeedForward(n_embd) | |
self.ln1 = nn.LayerNorm(n_embd) | |
self.ln2 = nn.LayerNorm(n_embd) | |
def forward(self, x): | |
x = x + self.sa(self.ln1(x)) # x = x + self .. is residual connection | |
x = x + self.ffwd(self.ln2(x)) | |
return x | |
class BigramLanguageModel(nn.Module): | |
def __init__(self): | |
super().__init__() | |
# each token directly reads off the logits for the next token from a lookup table | |
self.token_embedding_table = nn.Embedding(vocab_size, n_embd) | |
self.position_embedding_table = nn.Embedding(block_size, n_embd) # so each position from 0 to block_size - 1 will also get its own embedding vector | |
self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)]) | |
self.ln_f = nn.LayerNorm(n_embd) # final layer Norm | |
self.lm_head = nn.Linear(n_embd, vocab_size) | |
def forward(self, idx, targets=None): | |
B, T = idx.shape | |
# idx and targets are both (B,T) tensor of integers | |
tok_emb = self.token_embedding_table(idx) # (B,T,C=n_embed) | |
pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T, C) | |
# pos_emb tensor will be a (block_size, n_emb) tensor # block_size is max context length for predictions | |
# each row represents the embedding vector for the corresponding position | |
# so 0th row will represent the vector for 0th position | |
x = tok_emb + pos_emb # (B, T, C) | |
x = self.blocks(x) # (B, T, C) | |
logits = self.lm_head(x) # (B, T, C=vocab_size) | |
if targets is None: | |
loss = None | |
else: | |
B, T, C = logits.shape | |
logits = logits.view(B*T, C) | |
targets = targets.view(B*T) | |
loss = F.cross_entropy(logits, targets) | |
return logits, loss | |
def generate(self, idx, max_new_tokens): | |
# idx is (B, T) array of indices in the current context | |
for _ in range(max_new_tokens): | |
# crop idx to the last block_size tokens | |
idx_cond = idx[:, -block_size:] | |
# get the predictions | |
logits, loss = self.forward(idx_cond) | |
# focus only on the last time step | |
logits = logits[:, -1, :] # becomes (B, C) | |
# apply softmax to get probabilities | |
probs = F.softmax(logits, dim=-1) # (B, C) | |
# sample from the distribution | |
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1) | |
# append sampled index to the running sequence | |
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1) | |
return idx | |
# Instantiate the model | |
model = BigramLanguageModel() | |
# Specify the path to the pre-trained model checkpoint | |
checkpoint_path = 'checkpoint.pth' | |
# Load the model checkpoint | |
checkpoint = torch.load(checkpoint_path) | |
model.load_state_dict(checkpoint['model_state_dict']) | |
model.eval() | |
model.to(device) | |
# generate from the model | |
context = torch.zeros((1, 1), dtype=torch.long, device=device) | |
def greet(start_character, number_of_tokens): | |
context[0][0] = encode(start_character) | |
max_new_tokens = number_of_tokens | |
return decode(model.generate(context, max_new_tokens=max_new_tokens)[0].tolist()) | |
iface = gr.Interface(fn=greet, inputs=["text", "number"], outputs="text") | |
iface.launch() |