Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -20,33 +20,10 @@ def adjust_speed(audio_path, speed_factor):
|
|
20 |
sf.write(audio_path, y_speeded, sr)
|
21 |
|
22 |
|
23 |
-
|
24 |
-
|
25 |
import gradio as gr
|
26 |
-
from transformers import pipeline
|
27 |
-
from TTS.api import TTS
|
28 |
-
|
29 |
-
# Load pre-trained emotion detection model
|
30 |
-
emotion_classifier = pipeline("text-classification", model="bhadresh-savani/distilbert-base-uncased-emotion")
|
31 |
-
|
32 |
-
# Load TTS model
|
33 |
-
tts_model = TTS(model_name="tts_models/en/ljspeech/tacotron2-DDC")
|
34 |
|
35 |
-
|
36 |
-
emotion_settings = {
|
37 |
-
"neutral": {"pitch": 1.0, "speed": 1.0},
|
38 |
-
"joy": {"pitch": 1.3, "speed": 1.2},
|
39 |
-
"sadness": {"pitch": 0.8, "speed": 0.9},
|
40 |
-
"anger": {"pitch": 1.6, "speed": 1.4},
|
41 |
-
"fear": {"pitch": 1.2, "speed": 0.95},
|
42 |
-
"surprise": {"pitch": 1.5, "speed": 1.3},
|
43 |
-
"disgust": {"pitch": 0.9, "speed": 0.95},
|
44 |
-
"shame": {"pitch": 0.8, "speed": 0.85},
|
45 |
-
}
|
46 |
-
|
47 |
-
|
48 |
-
# Function to process text or file input and generate audio
|
49 |
-
def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
50 |
try:
|
51 |
# Get text from input or file
|
52 |
if file_input:
|
@@ -59,19 +36,18 @@ def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
|
59 |
emotion = emotion_data['label']
|
60 |
confidence = emotion_data['score']
|
61 |
|
62 |
-
# Adjust
|
63 |
settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0})
|
64 |
-
speed = settings["speed"]
|
65 |
pitch = settings["pitch"]
|
66 |
-
|
67 |
|
68 |
# Generate audio
|
69 |
audio_path = "output.wav"
|
70 |
-
tts_model.
|
|
|
71 |
|
72 |
-
#
|
73 |
-
pitch_factor
|
74 |
-
adjust_pitch(audio_path, pitch_factor)
|
75 |
|
76 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
77 |
else:
|
@@ -79,12 +55,9 @@ def emotion_aware_tts_pipeline(input_text=None, file_input=None):
|
|
79 |
except Exception as e:
|
80 |
return f"Error: {str(e)}", None
|
81 |
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
# Define Gradio interface
|
86 |
-
|
87 |
-
fn=
|
88 |
inputs=[
|
89 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
90 |
gr.File(label="Upload a Text File")
|
@@ -98,21 +71,4 @@ interface = gr.Interface(
|
|
98 |
)
|
99 |
|
100 |
# Launch Gradio interface
|
101 |
-
|
102 |
-
interface = gr.Interface(
|
103 |
-
fn=emotion_aware_tts_pipeline,
|
104 |
-
inputs=[
|
105 |
-
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
106 |
-
gr.File(label="Upload a Text File")
|
107 |
-
],
|
108 |
-
outputs=[
|
109 |
-
gr.Textbox(label="Detected Emotion"),
|
110 |
-
gr.Audio(label="Generated Audio")
|
111 |
-
],
|
112 |
-
title="Emotion-Aware Text-to-Speech",
|
113 |
-
description="Input text or upload a text file to detect the emotion and generate audio with emotion-aware modulation."
|
114 |
-
)
|
115 |
-
|
116 |
-
# Export the interface object so Hugging Face can launch it
|
117 |
-
if __name__ == "__main__":
|
118 |
-
interface.launch()
|
|
|
20 |
sf.write(audio_path, y_speeded, sr)
|
21 |
|
22 |
|
23 |
+
# Set up the Gradio interface
|
|
|
24 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
+
def emotion_aware_tts_pipeline_gradio(input_text=None, file_input=None):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
try:
|
28 |
# Get text from input or file
|
29 |
if file_input:
|
|
|
36 |
emotion = emotion_data['label']
|
37 |
confidence = emotion_data['score']
|
38 |
|
39 |
+
# Adjust pitch and speed
|
40 |
settings = emotion_settings.get(emotion.lower(), {"pitch": 1.0, "speed": 1.0})
|
|
|
41 |
pitch = settings["pitch"]
|
42 |
+
speed = settings["speed"]
|
43 |
|
44 |
# Generate audio
|
45 |
audio_path = "output.wav"
|
46 |
+
mel_spectrogram = tts_model.get_mel_spectrogram(input_text)
|
47 |
+
audio = vocoder.decode(mel_spectrogram)
|
48 |
|
49 |
+
# Post-processing: adjust pitch and speed
|
50 |
+
adjust_pitch_and_speed(audio_path, pitch_factor=pitch, speed_factor=speed)
|
|
|
51 |
|
52 |
return f"Detected Emotion: {emotion} (Confidence: {confidence:.2f})", audio_path
|
53 |
else:
|
|
|
55 |
except Exception as e:
|
56 |
return f"Error: {str(e)}", None
|
57 |
|
|
|
|
|
|
|
58 |
# Define Gradio interface
|
59 |
+
iface = gr.Interface(
|
60 |
+
fn=emotion_aware_tts_pipeline_gradio,
|
61 |
inputs=[
|
62 |
gr.Textbox(label="Input Text", placeholder="Enter text here"),
|
63 |
gr.File(label="Upload a Text File")
|
|
|
71 |
)
|
72 |
|
73 |
# Launch Gradio interface
|
74 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|