File size: 8,047 Bytes
a2585c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
093c900
a2585c8
 
 
 
 
093c900
a2585c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f56174e
a2585c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
from unsloth import FastLanguageModel
from unsloth.chat_templates import get_chat_template
import re
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional

from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseChatModel, SimpleChatModel
from langchain_core.messages import AIMessageChunk, BaseMessage, HumanMessage 
from langchain.schema import AIMessage, HumanMessage
import gradio as gr
from langchain_core.outputs import ChatGeneration, ChatGenerationChunk, ChatResult
from langchain_core.runnables import run_in_executor

#loading model
model, tokenizer = FastLanguageModel.from_pretrained(
    model_name = "Ankitnau25/govtbot-llama3.1-v1",
    max_seq_length = 8192,
    load_in_4bit = True,
    # token = "hf_...", # use one if using gated models like meta-llama/Llama-2-7b-hf
)
# loading tokenizer
tokenizer = get_chat_template(
    tokenizer,
    chat_template = "alpaca", # Supports zephyr, chatml, mistral, llama, alpaca, vicuna, vicuna_old, unsloth
    mapping = {"role" : "from", "content" : "value", "user" : "human", "assistant" : "gpt"}, # ShareGPT style
    map_eos_token = True, # Maps <|im_end|> to </s> instead
)
FastLanguageModel.for_inference(model) # Enable native 2x faster inference

def predict (inp_text):
      messages = [
          {"from": "human", "value": f"{inp_text}"},
      ]
      inputs = tokenizer.apply_chat_template(
          messages,
          tokenize = True,
          add_generation_prompt = True, # Must add for generation
          return_tensors = "pt",
      ).to("cuda")
      model.generation_config.pad_token_id = tokenizer.pad_token_id
      outputs = model.generate(input_ids = inputs, use_cache = True ,temperature = 0.01,max_new_tokens = 1024)
      result = tokenizer.batch_decode(outputs)
      # print(result)
      return filter_user_assistant_msgs(result[0])

def filter_user_assistant_msgs(text):
  msg_pattern = r".*Response:\n(.*?)<\|eot_id\|>"
  match = re.match(msg_pattern, text, re.DOTALL)
  if match:
    message = match.group(1).strip()
  else:
    message = text
  return message



#defining custom Langchain chat model
class CustomChatModelAdvanced(BaseChatModel):
    """A custom chat model that echoes the first `n` characters of the input.

    When contributing an implementation to LangChain, carefully document
    the model including the initialization parameters, include
    an example of how to initialize the model and include any relevant
    links to the underlying models documentation or API.

    Example:

        .. code-block:: python

            model = CustomChatModel(n=2)
            result = model.invoke([HumanMessage(content="hello")])
            result = model.batch([[HumanMessage(content="hello")],
                                 [HumanMessage(content="world")]])
    """

    model_name: str
    """The name of the model"""
    n: int
    """The number of characters from the last message of the prompt to be echoed."""

    def _generate(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> ChatResult:
        """Override the _generate method to implement the chat model logic.

        This can be a call to an API, a call to a local model, or any other
        implementation that generates a response to the input prompt.

        Args:
            messages: the prompt composed of a list of messages.
            stop: a list of strings on which the model should stop generating.
                  If generation stops due to a stop token, the stop token itself
                  SHOULD BE INCLUDED as part of the output. This is not enforced
                  across models right now, but it's a good practice to follow since
                  it makes it much easier to parse the output of the model
                  downstream and understand why generation stopped.
            run_manager: A run manager with callbacks for the LLM.
        """
        # Replace this with actual logic to generate a response from a list
        # of messages.
        last_message = messages[-1].content
        tokens = predict(last_message)
        message = AIMessage(
            content=tokens,
            additional_kwargs={},  # Used to add additional payload (e.g., function calling request)
            response_metadata={  # Use for response metadata
                "time_in_seconds": 3,
            },
        )
        ##

        generation = ChatGeneration(message=message)
        return ChatResult(generations=[generation])

    def _stream(
        self,
        messages: List[BaseMessage],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> Iterator[ChatGenerationChunk]:
        """Stream the output of the model.

        This method should be implemented if the model can generate output
        in a streaming fashion. If the model does not support streaming,
        do not implement it. In that case streaming requests will be automatically
        handled by the _generate method.

        Args:
            messages: the prompt composed of a list of messages.
            stop: a list of strings on which the model should stop generating.
                  If generation stops due to a stop token, the stop token itself
                  SHOULD BE INCLUDED as part of the output. This is not enforced
                  across models right now, but it's a good practice to follow since
                  it makes it much easier to parse the output of the model
                  downstream and understand why generation stopped.
            run_manager: A run manager with callbacks for the LLM.
        """
        last_message = messages[-1]
        tokens = last_message.content[: self.n]

        for token in tokens:
            chunk = ChatGenerationChunk(message=AIMessageChunk(content=token))

            if run_manager:
                # This is optional in newer versions of LangChain
                # The on_llm_new_token will be called automatically
                run_manager.on_llm_new_token(token, chunk=chunk)

            yield chunk

        # Let's add some other information (e.g., response metadata)
        chunk = ChatGenerationChunk(
            message=AIMessageChunk(content="", response_metadata={"time_in_sec": 3})
        )
        if run_manager:
            # This is optional in newer versions of LangChain
            # The on_llm_new_token will be called automatically
            run_manager.on_llm_new_token(token, chunk=chunk)
        yield chunk

    @property
    def _llm_type(self) -> str:
        """Get the type of language model used by this chat model."""
        return "echoing-chat-model-advanced"

    @property
    def _identifying_params(self) -> Dict[str, Any]:
        """Return a dictionary of identifying parameters.

        This information is used by the LangChain callback system, which
        is used for tracing purposes make it possible to monitor LLMs.
        """
        return {
            # The model name allows users to specify custom token counting
            # rules in LLM monitoring applications (e.g., in LangSmith users
            # can provide per token pricing for their model and monitor
            # costs for the given LLM.)
            "model_name": self.model_name,
        }
llm_model = CustomChatModelAdvanced(model_name='unsloth_llama3.1',n=4)



def predict_chat(message, history):
    history_langchain_format = []
    for human, ai in history:
        history_langchain_format.append(HumanMessage(content=human))
        history_langchain_format.append(AIMessage(content=ai))
    history_langchain_format.append(HumanMessage(content=message))
    gpt_response = llm_model(history_langchain_format)
    return gpt_response.content

gr.ChatInterface(predict_chat).launch(debug=True)