Spaces:
Runtime error
Runtime error
import os | |
import glob | |
import shutil | |
import lpips | |
import numpy as np | |
import argparse | |
from PIL import Image | |
from skimage.metrics import structural_similarity as ssim | |
from skimage.metrics import peak_signal_noise_ratio as psnr | |
from dataloader.image_folder import make_dataset | |
from util import util | |
import torch | |
parser = argparse.ArgumentParser(description='Image quality evaluations on the dataset') | |
parser.add_argument('--gt_path', type=str, default='../results/', help='path to original gt data') | |
parser.add_argument('--g_path', type=str, default='../results.', help='path to the generated data') | |
parser.add_argument('--save_path', type=str, default=None, help='path to save the best results') | |
parser.add_argument('--center', action='store_true', help='only calculate the center masked regions for the image quality') | |
parser.add_argument('--num_test', type=int, default=0, help='how many examples to load for testing') | |
args = parser.parse_args() | |
lpips_alex = lpips.LPIPS(net='alex') | |
def calculate_score(img_gt, img_test): | |
""" | |
function to calculate the image quality score | |
:param img_gt: original image | |
:param img_test: generated image | |
:return: mae, ssim, psnr | |
""" | |
l1loss = np.mean(np.abs(img_gt-img_test)) | |
psnr_score = psnr(img_gt, img_test, data_range=1) | |
ssim_score = ssim(img_gt, img_test, multichannel=True, data_range=1, win_size=11) | |
lpips_dis = lpips_alex(torch.from_numpy(img_gt).permute(2, 0, 1), torch.from_numpy(img_test).permute(2, 0, 1), normalize=True) | |
return l1loss, ssim_score, psnr_score, lpips_dis.data.numpy().item() | |
if __name__ == '__main__': | |
gt_paths, gt_size = make_dataset(args.gt_path) | |
g_paths, g_size = make_dataset(args.g_path) | |
l1losses = [] | |
ssims = [] | |
psnrs = [] | |
lpipses = [] | |
size = args.num_test if args.num_test > 0 else gt_size | |
for i in range(size): | |
gt_img = Image.open(gt_paths[i + 0*2000]).resize([256, 256]).convert('RGB') | |
gt_numpy = np.array(gt_img).astype(np.float32) / 255.0 | |
if args.center: | |
gt_numpy = gt_numpy[64:192, 64:192, :] | |
l1loss_sample = 1000 | |
ssim_sample = 0 | |
psnr_sample = 0 | |
lpips_sample = 1000 | |
name = gt_paths[i + 0*2000].split('/')[-1].split(".")[0] + "*" | |
g_paths = sorted(glob.glob(os.path.join(args.g_path, name))) | |
num_files = len(g_paths) | |
for j in range(num_files): | |
index = j | |
try: | |
g_img = Image.open(g_paths[j]).resize([256, 256]).convert('RGB') | |
g_numpy = np.array(g_img).astype(np.float32) / 255.0 | |
if args.center: | |
g_numpy = g_numpy[64:192, 64:192, :] | |
l1loss, ssim_score, psnr_score, lpips_score = calculate_score(gt_numpy, g_numpy) | |
if l1loss - ssim_score - psnr_score + lpips_score < l1loss_sample - ssim_sample - psnr_sample + lpips_sample: | |
l1loss_sample, ssim_sample, psnr_sample, lpips_sample = l1loss, ssim_score, psnr_score, lpips_score | |
best_index = index | |
except: | |
print(g_paths[index]) | |
if l1loss_sample != 1000 and ssim_sample !=0 and psnr_sample != 0: | |
print(g_paths[best_index]) | |
print(l1loss_sample, ssim_sample, psnr_sample, lpips_sample) | |
l1losses.append(l1loss_sample) | |
ssims.append(ssim_sample) | |
psnrs.append(psnr_sample) | |
lpipses.append(lpips_sample) | |
if args.save_path is not None: | |
util.mkdir(args.save_path) | |
shutil.copy(g_paths[best_index], args.save_path) | |
print('{:>10},{:>10},{:>10},{:>10}'.format('l1loss', 'SSIM', 'PSNR', 'LPIPS')) | |
print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.mean(l1losses), np.mean(ssims), np.mean(psnrs), np.mean(lpipses))) | |
print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.var(l1losses), np.var(ssims), np.var(psnrs), np.var(lpipses))) |