Anonymous-123's picture
Add application file
ec0fdfd
import os
import glob
import shutil
import lpips
import numpy as np
import argparse
from PIL import Image
from skimage.metrics import structural_similarity as ssim
from skimage.metrics import peak_signal_noise_ratio as psnr
from dataloader.image_folder import make_dataset
from util import util
import torch
parser = argparse.ArgumentParser(description='Image quality evaluations on the dataset')
parser.add_argument('--gt_path', type=str, default='../results/', help='path to original gt data')
parser.add_argument('--g_path', type=str, default='../results.', help='path to the generated data')
parser.add_argument('--save_path', type=str, default=None, help='path to save the best results')
parser.add_argument('--center', action='store_true', help='only calculate the center masked regions for the image quality')
parser.add_argument('--num_test', type=int, default=0, help='how many examples to load for testing')
args = parser.parse_args()
lpips_alex = lpips.LPIPS(net='alex')
def calculate_score(img_gt, img_test):
"""
function to calculate the image quality score
:param img_gt: original image
:param img_test: generated image
:return: mae, ssim, psnr
"""
l1loss = np.mean(np.abs(img_gt-img_test))
psnr_score = psnr(img_gt, img_test, data_range=1)
ssim_score = ssim(img_gt, img_test, multichannel=True, data_range=1, win_size=11)
lpips_dis = lpips_alex(torch.from_numpy(img_gt).permute(2, 0, 1), torch.from_numpy(img_test).permute(2, 0, 1), normalize=True)
return l1loss, ssim_score, psnr_score, lpips_dis.data.numpy().item()
if __name__ == '__main__':
gt_paths, gt_size = make_dataset(args.gt_path)
g_paths, g_size = make_dataset(args.g_path)
l1losses = []
ssims = []
psnrs = []
lpipses = []
size = args.num_test if args.num_test > 0 else gt_size
for i in range(size):
gt_img = Image.open(gt_paths[i + 0*2000]).resize([256, 256]).convert('RGB')
gt_numpy = np.array(gt_img).astype(np.float32) / 255.0
if args.center:
gt_numpy = gt_numpy[64:192, 64:192, :]
l1loss_sample = 1000
ssim_sample = 0
psnr_sample = 0
lpips_sample = 1000
name = gt_paths[i + 0*2000].split('/')[-1].split(".")[0] + "*"
g_paths = sorted(glob.glob(os.path.join(args.g_path, name)))
num_files = len(g_paths)
for j in range(num_files):
index = j
try:
g_img = Image.open(g_paths[j]).resize([256, 256]).convert('RGB')
g_numpy = np.array(g_img).astype(np.float32) / 255.0
if args.center:
g_numpy = g_numpy[64:192, 64:192, :]
l1loss, ssim_score, psnr_score, lpips_score = calculate_score(gt_numpy, g_numpy)
if l1loss - ssim_score - psnr_score + lpips_score < l1loss_sample - ssim_sample - psnr_sample + lpips_sample:
l1loss_sample, ssim_sample, psnr_sample, lpips_sample = l1loss, ssim_score, psnr_score, lpips_score
best_index = index
except:
print(g_paths[index])
if l1loss_sample != 1000 and ssim_sample !=0 and psnr_sample != 0:
print(g_paths[best_index])
print(l1loss_sample, ssim_sample, psnr_sample, lpips_sample)
l1losses.append(l1loss_sample)
ssims.append(ssim_sample)
psnrs.append(psnr_sample)
lpipses.append(lpips_sample)
if args.save_path is not None:
util.mkdir(args.save_path)
shutil.copy(g_paths[best_index], args.save_path)
print('{:>10},{:>10},{:>10},{:>10}'.format('l1loss', 'SSIM', 'PSNR', 'LPIPS'))
print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.mean(l1losses), np.mean(ssims), np.mean(psnrs), np.mean(lpipses)))
print('{:10.4f},{:10.4f},{:10.4f},{:10.4f}'.format(np.var(l1losses), np.var(ssims), np.var(psnrs), np.var(lpipses)))