Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import math | |
###################################################################################### | |
# position embedding | |
###################################################################################### | |
class PositionEmbeddingLearned(nn.Module): | |
""" | |
This is a learned version of the position embedding | |
""" | |
def __init__(self, num_pos_feats=256): | |
super().__init__() | |
self.row_embed = nn.Embedding(32, num_pos_feats) | |
self.col_embed = nn.Embedding(32, num_pos_feats) | |
self.reset_parameters() | |
def reset_parameters(self): | |
nn.init.uniform_(self.row_embed.weight) | |
nn.init.uniform_(self.col_embed.weight) | |
def forward(self, x, mask): | |
h, w = x.shape[-2:] | |
i = torch.arange(w, device=x.device) | |
j = torch.arange(h, device=x.device) | |
x_emb = self.col_embed(i).unsqueeze(0).repeat(h, 1, 1) | |
y_emb = self.row_embed(j).unsqueeze(1).repeat(1, w, 1) | |
pos = (x_emb + y_emb).permute(2, 0, 1).unsqueeze(0).repeat(x.shape[0], 1, 1, 1) | |
return pos | |
class PositionEmbeddingSine(nn.Module): | |
""" | |
This is a standard version of the position embedding, very similar to the one used by the | |
"Attention is all you need" paper, generalized to work on examples | |
""" | |
def __init__(self, feats_dim=512, temperature=10000, normalize=False, scale=None): | |
""" | |
explicitly encode the position using the sinusoid: | |
PE(pos,2i) = sin(pos/temperature^(2*i/d_model)) | |
PE(pos,2i+1) = cos(pos/temperature^(2*i/d_model)) | |
:param feats_dim: the dimension of features, each dimension of the positional embedding to a sinusoid | |
:param temperature: wavelengths from a geometric progression from scale | |
:param normalize: whether to normalize the position to (0,1) | |
:param scale: scale for the position embedding | |
""" | |
super(PositionEmbeddingSine, self).__init__() | |
self.feats_dim = feats_dim | |
self.T = temperature | |
self.norm = normalize | |
if scale is None: | |
scale = 2 * math.pi | |
self.scale = scale | |
def forward(self, x, mask): | |
x_embed = mask.cumsum(1, dtype=torch.float32) | |
y_embed = mask.cumsum(2, dtype=torch.float32) | |
if self.norm: | |
eps = 1e-5 | |
x_embed = x_embed / (x_embed[:, -1:, :] + eps) * self.scale | |
y_embed = y_embed / (y_embed[:, :, -1:] + eps) * self.scale | |
dim_t = torch.arange(self.feats_dim, dtype=torch.float32, device=x.device) | |
dim_t = self.T ** (2*(dim_t//2)/self.feats_dim) | |
pos_x = x_embed[:, :, :, None] / dim_t | |
pos_y = y_embed[:, :, :, None] / dim_t | |
pos_x[:, :, :, 0::2], pos_x[:, :, :, 1::2] = pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos() | |
pos_y[:, :, :, 0::2], pos_y[:, :, :, 1::2] = pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos() | |
pos = (pos_x + pos_y).permute(0, 3, 1, 2) * 0.5 | |
return pos | |
def build_position_embed(embed_type='learned', feats_dim=512, temperature=10000): | |
if embed_type == 'sine': | |
pos_embed = PositionEmbeddingSine(feats_dim, temperature, normalize=True) | |
elif embed_type == 'learned': | |
pos_embed = PositionEmbeddingLearned(feats_dim) | |
else: | |
raise ValueError(f"nor supported {embed_type}") | |
return pos_embed | |