File size: 13,555 Bytes
826447b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import streamlit as st
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
import numpy as np
import supervision as sv
import albumentations as A
import cv2
from transformers import AutoConfig
import yaml

# Set Streamlit page configuration for a wide layout
st.set_page_config(layout="wide")

# Custom CSS for better layout and mobile responsiveness
st.markdown("""
    <style>
        .main {
            max-width: 1200px;  /* Max width for content */
            margin: 0 auto;
        }
        .block-container {
            padding-top: 2rem;
            padding-bottom: 2rem;
            padding-left: 3rem;
            padding-right: 3rem;
        }
        .title {
            font-size: 2.5rem;
            text-align: center;
            color: #FF6347;
        }
        .subheader {
            font-size: 1.5rem;
            margin-bottom: 20px;
        }
        .btn {
            font-size: 1.1rem;
            padding: 10px 20px;
            background-color: #FF6347;
            color: white;
            border-radius: 5px;
            border: none;
            cursor: pointer;
        }
        .btn:hover {
            background-color: #FF4500;
        }
        .column-spacing {
            display: flex;
            justify-content: space-between;
        }
        .col-half {
            width: 48%;
        }
        .col-full {
            width: 100%;
        }
        .instructions {
            padding: 20px;
            background-color: #f9f9f9;
            border-radius: 8px;
            box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
        }
    </style>
""", unsafe_allow_html=True)

# Load Model and Processor
@st.cache_resource
def load_model():
    REVISION = 'refs/pr/6'
    MODEL_NAME = "RioJune/AD-KD-MICCAI25"
    DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
    config_model.vision_config.model_type = "davit"

    model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, config=config_model).to(DEVICE)

    BASE_PROCESSOR = "microsoft/Florence-2-base-ft"
    processor = AutoProcessor.from_pretrained(BASE_PROCESSOR, trust_remote_code=True)
    processor.image_processor.size = 512
    processor.image_processor.crop_size = 512

    return model, processor, DEVICE

model, processor, DEVICE = load_model()

# Load Definitions
@st.cache_resource
def load_definitions():
    vindr_path = 'configs/vindr_definition.yaml'
    padchest_path = 'configs/padchest_definition.yaml'
    prompt_path = 'examples/prompt.yaml'

    with open(vindr_path, 'r') as file:
        vindr_definitions = yaml.safe_load(file)
    with open(padchest_path, 'r') as file:
        padchest_definitions = yaml.safe_load(file)
    with open(prompt_path, 'r') as file:
        prompt_definitions = yaml.safe_load(file)

    return vindr_definitions, padchest_definitions, prompt_definitions

vindr_definitions, padchest_definitions, prompt_definitions = load_definitions()

dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions}

def load_example_images():
    return list(prompt_definitions.keys())

example_images = load_example_images()

def apply_transform(image, size_mode=512):
    pad_resize_transform = A.Compose([
        A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA),
        A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)),
        A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA),
    ])
    image_np = np.array(image)
    transformed = pad_resize_transform(image=image_np)
    return transformed["image"]

# Streamlit UI with Colorful Title and Emojis
st.markdown("<h1 class='title'>🩺 Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions πŸš€</h1>", unsafe_allow_html=True)
st.markdown(
    "<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! πŸŽ‰ Choose an example or upload your own image to get started! πŸ‘‡</p>", 
    unsafe_allow_html=True
)

# Display Example Images First
st.subheader("πŸŒ„ Example Images")
selected_example = st.selectbox("Choose an example", example_images)
image = Image.open(selected_example).convert("RGB")
example_diseases = prompt_definitions.get(selected_example, [])
st.write("**Associated Diseases:**", ", ".join(example_diseases))

# Layout for Original Image and Instructions
col1, col2 = st.columns([1, 2])

# Left column for original image
with col1:
    st.image(image, caption=f"Original Example Image: {selected_example}", width=400)

# Right column for Instructions and Run Inference Button
with col2:
    st.subheader("βš™οΈ Instructions to Get Started:")
    st.write("""
        - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
        - **Choose an Example**: πŸŒ„ Select an example image from the dataset to view its associated diseases.
        - **Upload Your Own Image**: πŸ“€ Upload an image of your choice to analyze it for diseases.
        - **Select Dataset**: πŸ“š Choose between available datasets (Vindr or PadChest) for disease information.
        - **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
    """)

    st.subheader("⚠️ Warning:")
    st.write("""
        - **🚫 Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
        - This demo is intended for **πŸ”¬ research purposes only** and should **❌ not be used for medical diagnoses**.
        - The model’s responses may contain **πŸ€– hallucinations or incorrect information**. Always consult a **πŸ‘¨β€βš•οΈ medical professional** for accurate diagnosis and advice.
    """)

    st.markdown("</div>", unsafe_allow_html=True)

# Run Inference Button
if st.button("Run Inference on Example", key="example"):
    if image is None:
        st.error("❌ Please select an example image first.")
    else:
        # Use the selected example's disease and definition for inference
        disease_choice = example_diseases[0] if example_diseases else ""
        definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))

        # Generate the prompt for the model
        det_obj = f"{disease_choice} means {definition}."
        st.write(f"**Definition:** {definition}")
        prompt = f"Locate the phrases in the caption: {det_obj}."
        prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"

        # Prepare the image and input
        np_image = np.array(image)
        inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)

        with st.spinner("Processing... ⏳"):
            # Generate the result
            generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
            generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

            predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])

            detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])

            # Annotate the image with bounding boxes and labels
            bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
            label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
            image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
            image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
            annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))

            # Display the original and result images side by side
            col1, col2 = st.columns([1, 1])

            with col1:
                st.image(image, caption=f"Original Image: {selected_example}", width=400)

            with col2:
                st.image(annotated_image, caption="Inference Results πŸ–ΌοΈ", width=400)

            # Display the generated text
            st.write("**Generated Text:**", generated_text)

# Upload Image section
st.subheader("πŸ“€ Upload Your Own Image")

col1, col2 = st.columns([1, 1])
with col1:
    dataset_choice = st.selectbox("Select Dataset πŸ“š", options=list(dataset_options.keys()))
    disease_options = list(dataset_options[dataset_choice].keys())
with col2:
    disease_choice = st.selectbox("Select Disease 🦠", options=disease_options)

uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])

# if uploaded_file:
#     image = Image.open(uploaded_file).convert("RGB")
#     image = apply_transform(image)  # Ensure the uploaded image is transformed correctly
#     st.image(image, caption="Uploaded Image", width=400)

#     # Let user select dataset and disease dynamically
#     disease_choice = disease_choice if disease_choice else example_diseases[0]

# # Get Definition Priority: Dataset -> User Input
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
# if not definition:
#     definition = st.text_input("Enter Definition Manually πŸ“", value="")

col1, col2 = st.columns([1, 2])

with col1:
    # Handle file upload
    if uploaded_file:
        image = Image.open(uploaded_file).convert("RGB")
        image = apply_transform(image)  # Ensure the uploaded image is transformed correctly
        st.image(image, caption="Uploaded Image", width=400)

        # Let user select dataset and disease dynamically
        disease_choice = disease_choice if disease_choice else example_diseases[0]

        # Get Definition Priority: Dataset -> User Input
        definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
        if not definition:
            definition = st.text_input("Enter Definition Manually πŸ“", value="")

with col2:
    # Instructions and warnings
    st.subheader("βš™οΈ Instructions to Get Started:")
    st.write("""
        - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
        - **Choose an Example**: πŸŒ„ Select an example image from the dataset to view its associated diseases.
        - **Upload Your Own Image**: πŸ“€ Upload an image of your choice to analyze it for diseases.
        - **Select Dataset**: πŸ“š Choose between available datasets (Vindr or PadChest) for disease information.
        - **Select Disease**: 🦠 Pick the disease to be analyzed from the list of diseases in the selected dataset.
    """)

    st.subheader("⚠️ Warning:")
    st.write("""
        - **🚫 Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
        - This demo is intended for **πŸ”¬ research purposes only** and should **❌ not be used for medical diagnoses**.
        - The model’s responses may contain **πŸ€– hallucinations or incorrect information**. Always consult a **πŸ‘¨β€βš•οΈ medical professional** for accurate diagnosis and advice.
    """)

# Run inference after upload
if st.button("Run Inference πŸƒβ€β™‚οΈ"):
    if image is None:
        st.error("❌ Please upload an image or select an example.")
    else:
        det_obj = f"{disease_choice} means {definition}."
        st.write(f"**Definition:** {definition}")

        # Construct Prompt with Disease Definition
        prompt = f"Locate the phrases in the caption: {det_obj}."
        prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"

        np_image = np.array(image)
        inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)

        with st.spinner("Processing... ⏳"):
            generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
            generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]

            predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])

            detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])

            bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
            label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
            image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
            image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
            annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))

            # Create two columns to display the original and the results side by side
            col1, col2 = st.columns([1, 1])

            # Left column for original image
            with col1:
                st.image(image, caption="Uploaded Image", width=400)

            # Right column for result image
            with col2:
                st.image(annotated_image, caption="Inference Results πŸ–ΌοΈ", width=400)

            # Display the generated text
            st.write("**Generated Text:**", generated_text)