Spaces:
Running
Running
File size: 13,555 Bytes
826447b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 |
import streamlit as st
from PIL import Image
import torch
from transformers import AutoModelForCausalLM, AutoProcessor
import numpy as np
import supervision as sv
import albumentations as A
import cv2
from transformers import AutoConfig
import yaml
# Set Streamlit page configuration for a wide layout
st.set_page_config(layout="wide")
# Custom CSS for better layout and mobile responsiveness
st.markdown("""
<style>
.main {
max-width: 1200px; /* Max width for content */
margin: 0 auto;
}
.block-container {
padding-top: 2rem;
padding-bottom: 2rem;
padding-left: 3rem;
padding-right: 3rem;
}
.title {
font-size: 2.5rem;
text-align: center;
color: #FF6347;
}
.subheader {
font-size: 1.5rem;
margin-bottom: 20px;
}
.btn {
font-size: 1.1rem;
padding: 10px 20px;
background-color: #FF6347;
color: white;
border-radius: 5px;
border: none;
cursor: pointer;
}
.btn:hover {
background-color: #FF4500;
}
.column-spacing {
display: flex;
justify-content: space-between;
}
.col-half {
width: 48%;
}
.col-full {
width: 100%;
}
.instructions {
padding: 20px;
background-color: #f9f9f9;
border-radius: 8px;
box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
}
</style>
""", unsafe_allow_html=True)
# Load Model and Processor
@st.cache_resource
def load_model():
REVISION = 'refs/pr/6'
MODEL_NAME = "RioJune/AD-KD-MICCAI25"
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
config_model = AutoConfig.from_pretrained("microsoft/Florence-2-base-ft", trust_remote_code=True)
config_model.vision_config.model_type = "davit"
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True, config=config_model).to(DEVICE)
BASE_PROCESSOR = "microsoft/Florence-2-base-ft"
processor = AutoProcessor.from_pretrained(BASE_PROCESSOR, trust_remote_code=True)
processor.image_processor.size = 512
processor.image_processor.crop_size = 512
return model, processor, DEVICE
model, processor, DEVICE = load_model()
# Load Definitions
@st.cache_resource
def load_definitions():
vindr_path = 'configs/vindr_definition.yaml'
padchest_path = 'configs/padchest_definition.yaml'
prompt_path = 'examples/prompt.yaml'
with open(vindr_path, 'r') as file:
vindr_definitions = yaml.safe_load(file)
with open(padchest_path, 'r') as file:
padchest_definitions = yaml.safe_load(file)
with open(prompt_path, 'r') as file:
prompt_definitions = yaml.safe_load(file)
return vindr_definitions, padchest_definitions, prompt_definitions
vindr_definitions, padchest_definitions, prompt_definitions = load_definitions()
dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions}
def load_example_images():
return list(prompt_definitions.keys())
example_images = load_example_images()
def apply_transform(image, size_mode=512):
pad_resize_transform = A.Compose([
A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA),
A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)),
A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA),
])
image_np = np.array(image)
transformed = pad_resize_transform(image=image_np)
return transformed["image"]
# Streamlit UI with Colorful Title and Emojis
st.markdown("<h1 class='title'>π©Ί Enhancing Abnormality Grounding for Vision Language Models with Knowledge Descriptions π</h1>", unsafe_allow_html=True)
st.markdown(
"<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! π Choose an example or upload your own image to get started! π</p>",
unsafe_allow_html=True
)
# Display Example Images First
st.subheader("π Example Images")
selected_example = st.selectbox("Choose an example", example_images)
image = Image.open(selected_example).convert("RGB")
example_diseases = prompt_definitions.get(selected_example, [])
st.write("**Associated Diseases:**", ", ".join(example_diseases))
# Layout for Original Image and Instructions
col1, col2 = st.columns([1, 2])
# Left column for original image
with col1:
st.image(image, caption=f"Original Example Image: {selected_example}", width=400)
# Right column for Instructions and Run Inference Button
with col2:
st.subheader("βοΈ Instructions to Get Started:")
st.write("""
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
- **Choose an Example**: π Select an example image from the dataset to view its associated diseases.
- **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases.
- **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information.
- **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset.
""")
st.subheader("β οΈ Warning:")
st.write("""
- **π« Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
- The modelβs responses may contain **π€ hallucinations or incorrect information**. Always consult a **π¨ββοΈ medical professional** for accurate diagnosis and advice.
""")
st.markdown("</div>", unsafe_allow_html=True)
# Run Inference Button
if st.button("Run Inference on Example", key="example"):
if image is None:
st.error("β Please select an example image first.")
else:
# Use the selected example's disease and definition for inference
disease_choice = example_diseases[0] if example_diseases else ""
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
# Generate the prompt for the model
det_obj = f"{disease_choice} means {definition}."
st.write(f"**Definition:** {definition}")
prompt = f"Locate the phrases in the caption: {det_obj}."
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
# Prepare the image and input
np_image = np.array(image)
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
with st.spinner("Processing... β³"):
# Generate the result
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
# Annotate the image with bounding boxes and labels
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
# Display the original and result images side by side
col1, col2 = st.columns([1, 1])
with col1:
st.image(image, caption=f"Original Image: {selected_example}", width=400)
with col2:
st.image(annotated_image, caption="Inference Results πΌοΈ", width=400)
# Display the generated text
st.write("**Generated Text:**", generated_text)
# Upload Image section
st.subheader("π€ Upload Your Own Image")
col1, col2 = st.columns([1, 1])
with col1:
dataset_choice = st.selectbox("Select Dataset π", options=list(dataset_options.keys()))
disease_options = list(dataset_options[dataset_choice].keys())
with col2:
disease_choice = st.selectbox("Select Disease π¦ ", options=disease_options)
uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
# if uploaded_file:
# image = Image.open(uploaded_file).convert("RGB")
# image = apply_transform(image) # Ensure the uploaded image is transformed correctly
# st.image(image, caption="Uploaded Image", width=400)
# # Let user select dataset and disease dynamically
# disease_choice = disease_choice if disease_choice else example_diseases[0]
# # Get Definition Priority: Dataset -> User Input
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
# if not definition:
# definition = st.text_input("Enter Definition Manually π", value="")
col1, col2 = st.columns([1, 2])
with col1:
# Handle file upload
if uploaded_file:
image = Image.open(uploaded_file).convert("RGB")
image = apply_transform(image) # Ensure the uploaded image is transformed correctly
st.image(image, caption="Uploaded Image", width=400)
# Let user select dataset and disease dynamically
disease_choice = disease_choice if disease_choice else example_diseases[0]
# Get Definition Priority: Dataset -> User Input
definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
if not definition:
definition = st.text_input("Enter Definition Manually π", value="")
with col2:
# Instructions and warnings
st.subheader("βοΈ Instructions to Get Started:")
st.write("""
- **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
- **Choose an Example**: π Select an example image from the dataset to view its associated diseases.
- **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases.
- **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information.
- **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset.
""")
st.subheader("β οΈ Warning:")
st.write("""
- **π« Please avoid uploading non-frontal chest X-ray images**. Our model has been specifically trained on **frontal chest X-ray images**.
- This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
- The modelβs responses may contain **π€ hallucinations or incorrect information**. Always consult a **π¨ββοΈ medical professional** for accurate diagnosis and advice.
""")
# Run inference after upload
if st.button("Run Inference πββοΈ"):
if image is None:
st.error("β Please upload an image or select an example.")
else:
det_obj = f"{disease_choice} means {definition}."
st.write(f"**Definition:** {definition}")
# Construct Prompt with Disease Definition
prompt = f"Locate the phrases in the caption: {det_obj}."
prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
np_image = np.array(image)
inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
with st.spinner("Processing... β³"):
generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
# Create two columns to display the original and the results side by side
col1, col2 = st.columns([1, 1])
# Left column for original image
with col1:
st.image(image, caption="Uploaded Image", width=400)
# Right column for result image
with col2:
st.image(annotated_image, caption="Inference Results πΌοΈ", width=400)
# Display the generated text
st.write("**Generated Text:**", generated_text)
|