Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -1,399 +1,3 @@
|
|
| 1 |
-
# # import os
|
| 2 |
-
# # import shutil
|
| 3 |
-
|
| 4 |
-
# # # Clean and recreate HF cache directory
|
| 5 |
-
# # cache_dir = "/tmp/hf_cache"
|
| 6 |
-
# # if os.path.exists(cache_dir):
|
| 7 |
-
# # shutil.rmtree(cache_dir)
|
| 8 |
-
# # os.makedirs(cache_dir, exist_ok=True)
|
| 9 |
-
# # os.environ["HF_HOME"] = cache_dir
|
| 10 |
-
|
| 11 |
-
# import streamlit as st
|
| 12 |
-
# from PIL import Image
|
| 13 |
-
# import torch
|
| 14 |
-
# from transformers import AutoModelForCausalLM, AutoProcessor
|
| 15 |
-
# import numpy as np
|
| 16 |
-
# import supervision as sv
|
| 17 |
-
# import albumentations as A
|
| 18 |
-
# import cv2
|
| 19 |
-
# from transformers import AutoConfig
|
| 20 |
-
# import yaml
|
| 21 |
-
|
| 22 |
-
# # Set Streamlit page configuration for a wide layout
|
| 23 |
-
# st.set_page_config(layout="wide")
|
| 24 |
-
|
| 25 |
-
# # Custom CSS for better layout and mobile responsiveness
|
| 26 |
-
# st.markdown("""
|
| 27 |
-
# <style>
|
| 28 |
-
# .main {
|
| 29 |
-
# max-width: 1200px; /* Max width for content */
|
| 30 |
-
# margin: 0 auto;
|
| 31 |
-
# }
|
| 32 |
-
# .block-container {
|
| 33 |
-
# padding-top: 2rem;
|
| 34 |
-
# padding-bottom: 2rem;
|
| 35 |
-
# padding-left: 3rem;
|
| 36 |
-
# padding-right: 3rem;
|
| 37 |
-
# }
|
| 38 |
-
# .title {
|
| 39 |
-
# font-size: 3.2rem;
|
| 40 |
-
# text-align: center;
|
| 41 |
-
# background: linear-gradient(135deg, #0575e6 0%, #ff0080 50%, #7928ca 100%);
|
| 42 |
-
# -webkit-background-clip: text;
|
| 43 |
-
# -webkit-text-fill-color: transparent;
|
| 44 |
-
# background-clip: text;
|
| 45 |
-
# }
|
| 46 |
-
|
| 47 |
-
# @keyframes gradientShift {
|
| 48 |
-
# 0% { background-position: 0% 50%; }
|
| 49 |
-
# 50% { background-position: 100% 50%; }
|
| 50 |
-
# 100% { background-position: 0% 50%; }
|
| 51 |
-
# }
|
| 52 |
-
# .subheader {
|
| 53 |
-
# font-size: 1.5rem;
|
| 54 |
-
# margin-bottom: 20px;
|
| 55 |
-
# }
|
| 56 |
-
# .btn {
|
| 57 |
-
# font-size: 1.1rem;
|
| 58 |
-
# padding: 10px 20px;
|
| 59 |
-
# background-color: #FF6347;
|
| 60 |
-
# color: white;
|
| 61 |
-
# border-radius: 5px;
|
| 62 |
-
# border: none;
|
| 63 |
-
# cursor: pointer;
|
| 64 |
-
# }
|
| 65 |
-
# .btn:hover {
|
| 66 |
-
# background-color: #FF4500;
|
| 67 |
-
# }
|
| 68 |
-
# .column-spacing {
|
| 69 |
-
# display: flex;
|
| 70 |
-
# justify-content: space-between;
|
| 71 |
-
# }
|
| 72 |
-
# .col-half {
|
| 73 |
-
# width: 48%;
|
| 74 |
-
# }
|
| 75 |
-
# .col-full {
|
| 76 |
-
# width: 100%;
|
| 77 |
-
# }
|
| 78 |
-
# .instructions {
|
| 79 |
-
# padding: 20px;
|
| 80 |
-
# background-color: #f9f9f9;
|
| 81 |
-
# border-radius: 8px;
|
| 82 |
-
# box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
| 83 |
-
# }
|
| 84 |
-
# </style>
|
| 85 |
-
# """, unsafe_allow_html=True)
|
| 86 |
-
|
| 87 |
-
# # Load Model and Processor
|
| 88 |
-
# @st.cache_resource
|
| 89 |
-
# def load_model():
|
| 90 |
-
# MODEL_NAME = 'Anonymous-AC/K2Sight-Lite'
|
| 91 |
-
# DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 92 |
-
# model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, trust_remote_code=True).to(DEVICE)
|
| 93 |
-
# processor = AutoProcessor.from_pretrained(MODEL_NAME, trust_remote_code=True)
|
| 94 |
-
# processor.image_processor.size = 512
|
| 95 |
-
# processor.image_processor.crop_size = 512
|
| 96 |
-
|
| 97 |
-
# return model, processor, DEVICE
|
| 98 |
-
|
| 99 |
-
# model, processor, DEVICE = load_model()
|
| 100 |
-
|
| 101 |
-
# # Load Definitions
|
| 102 |
-
# @st.cache_resource
|
| 103 |
-
# def load_definitions():
|
| 104 |
-
# vindr_path = 'configs/vindr_definition.yaml'
|
| 105 |
-
# padchest_path = 'configs/padchest_definition.yaml'
|
| 106 |
-
# prompt_path = 'examples/prompt.yaml'
|
| 107 |
-
|
| 108 |
-
# with open(vindr_path, 'r') as file:
|
| 109 |
-
# vindr_definitions = yaml.safe_load(file)
|
| 110 |
-
# with open(padchest_path, 'r') as file:
|
| 111 |
-
# padchest_definitions = yaml.safe_load(file)
|
| 112 |
-
# with open(prompt_path, 'r') as file:
|
| 113 |
-
# prompt_definitions = yaml.safe_load(file)
|
| 114 |
-
|
| 115 |
-
# return vindr_definitions, padchest_definitions, prompt_definitions
|
| 116 |
-
|
| 117 |
-
# vindr_definitions, padchest_definitions, prompt_definitions = load_definitions()
|
| 118 |
-
|
| 119 |
-
# dataset_options = {"Vindr": vindr_definitions, "PadChest": padchest_definitions}
|
| 120 |
-
|
| 121 |
-
# def load_example_images():
|
| 122 |
-
# return list(prompt_definitions.keys())
|
| 123 |
-
|
| 124 |
-
# example_images = load_example_images()
|
| 125 |
-
|
| 126 |
-
# def apply_transform(image, size_mode=512):
|
| 127 |
-
# pad_resize_transform = A.Compose([
|
| 128 |
-
# A.LongestMaxSize(max_size=size_mode, interpolation=cv2.INTER_AREA),
|
| 129 |
-
# A.PadIfNeeded(min_height=size_mode, min_width=size_mode, border_mode=cv2.BORDER_CONSTANT, value=(0, 0, 0)),
|
| 130 |
-
# A.Resize(height=512, width=512, interpolation=cv2.INTER_AREA),
|
| 131 |
-
# ])
|
| 132 |
-
# image_np = np.array(image)
|
| 133 |
-
# transformed = pad_resize_transform(image=image_np)
|
| 134 |
-
# return transformed["image"]
|
| 135 |
-
|
| 136 |
-
# # Streamlit UI with Colorful Title and Emojis
|
| 137 |
-
# # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>π©Ί</span></div>", unsafe_allow_html=True)
|
| 138 |
-
# st.markdown("<h1 class='title'>Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding</h1>", unsafe_allow_html=True)
|
| 139 |
-
# # st.markdown("<div style='text-align: center;'><span style='font-size: 3rem;'>π</span></div>", unsafe_allow_html=True)
|
| 140 |
-
# st.markdown(
|
| 141 |
-
# "<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! π Choose an example or upload your own image to get started! π</p>",
|
| 142 |
-
# unsafe_allow_html=True
|
| 143 |
-
# )
|
| 144 |
-
|
| 145 |
-
# # Display Example Images First
|
| 146 |
-
# st.subheader("π Example Images")
|
| 147 |
-
# selected_example = st.selectbox("Choose an example", example_images)
|
| 148 |
-
# image = Image.open(selected_example).convert("RGB")
|
| 149 |
-
# example_diseases = prompt_definitions.get(selected_example, [])
|
| 150 |
-
# st.write("**Associated Diseases:**", ", ".join(example_diseases))
|
| 151 |
-
|
| 152 |
-
# # Layout for Original Image and Instructions
|
| 153 |
-
# col1, col2 = st.columns([1, 2])
|
| 154 |
-
|
| 155 |
-
# # Left column for original image
|
| 156 |
-
# with col1:
|
| 157 |
-
# st.image(image, caption=f"Original Example Image: {selected_example}", width=400)
|
| 158 |
-
|
| 159 |
-
# # Right column for Instructions and Run Inference Button
|
| 160 |
-
# with col2:
|
| 161 |
-
# st.subheader("βοΈ Instructions to Get Started:")
|
| 162 |
-
# st.write("""
|
| 163 |
-
# - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
|
| 164 |
-
# - **Choose an Example**: π Select an example image from the dataset to view its associated diseases.
|
| 165 |
-
# - **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases.
|
| 166 |
-
# - **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information.
|
| 167 |
-
# - **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset.
|
| 168 |
-
# """)
|
| 169 |
-
|
| 170 |
-
# st.subheader("β οΈ Warning:")
|
| 171 |
-
# st.write("""
|
| 172 |
-
# - **π« Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
|
| 173 |
-
# - This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
|
| 174 |
-
# - The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
| 175 |
-
# - Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
| 176 |
-
# """, unsafe_allow_html=True)
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
# st.markdown("</div>", unsafe_allow_html=True)
|
| 180 |
-
|
| 181 |
-
# # Run Inference Button
|
| 182 |
-
# if st.button("Run Inference on Example", key="example"):
|
| 183 |
-
# if image is None:
|
| 184 |
-
# st.error("β Please select an example image first.")
|
| 185 |
-
# else:
|
| 186 |
-
# # Use the selected example's disease and definition for inference
|
| 187 |
-
# disease_choice = example_diseases[0] if example_diseases else ""
|
| 188 |
-
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
| 189 |
-
|
| 190 |
-
# # Generate the prompt for the model
|
| 191 |
-
# det_obj = f"{disease_choice} means {definition}."
|
| 192 |
-
# st.write(f"**Definition:** {definition}")
|
| 193 |
-
# prompt = f"Locate the phrases in the caption: {det_obj}."
|
| 194 |
-
# prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
|
| 195 |
-
|
| 196 |
-
# # Prepare the image and input
|
| 197 |
-
# np_image = np.array(image)
|
| 198 |
-
# inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
| 199 |
-
|
| 200 |
-
# with st.spinner("Processing... β³"):
|
| 201 |
-
# outputs = model.generate(
|
| 202 |
-
# input_ids=inputs["input_ids"],
|
| 203 |
-
# pixel_values=inputs["pixel_values"],
|
| 204 |
-
# max_new_tokens=1024,
|
| 205 |
-
# num_beams=3,
|
| 206 |
-
# output_scores=True, # Make sure we get the scores/logits
|
| 207 |
-
# return_dict_in_generate=True # Ensures you get both sequences and scores in the output
|
| 208 |
-
# )
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
# # Ensure transition_scores is properly extracted
|
| 212 |
-
# transition_scores = model.compute_transition_scores(
|
| 213 |
-
# outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
|
| 214 |
-
# )
|
| 215 |
-
|
| 216 |
-
# # Get the generated token IDs (ignoring the input tokens part)
|
| 217 |
-
# generated_ids = outputs.sequences
|
| 218 |
-
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 219 |
-
|
| 220 |
-
# # Get input length
|
| 221 |
-
# input_length = inputs.input_ids.shape[1]
|
| 222 |
-
# generated_tokens = outputs.sequences
|
| 223 |
-
|
| 224 |
-
# # Calculate output length (number of generated tokens)
|
| 225 |
-
# output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
|
| 226 |
-
|
| 227 |
-
# # Get length penalty
|
| 228 |
-
# length_penalty = model.generation_config.length_penalty
|
| 229 |
-
|
| 230 |
-
# # Calculate total score for the generated sentence
|
| 231 |
-
# reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
|
| 232 |
-
|
| 233 |
-
# # Convert log-probability to probability (0-1 range)
|
| 234 |
-
# probabilities = np.exp(reconstructed_scores.cpu().numpy())
|
| 235 |
-
|
| 236 |
-
# # Streamlit UI to display the result
|
| 237 |
-
# st.markdown(f"**π― Probability of the Results:** <span style='color:#28a745; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
# predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
| 241 |
-
|
| 242 |
-
# detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
| 243 |
-
|
| 244 |
-
# # Annotate the image with bounding boxes and labels
|
| 245 |
-
# bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 246 |
-
# label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 247 |
-
# image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
|
| 248 |
-
# image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
|
| 249 |
-
# annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
|
| 250 |
-
|
| 251 |
-
# # Display the original and result images side by side
|
| 252 |
-
# col1, col2 = st.columns([1, 1])
|
| 253 |
-
|
| 254 |
-
# with col1:
|
| 255 |
-
# st.image(image, caption=f"Original Image: {selected_example}", width=400)
|
| 256 |
-
|
| 257 |
-
# with col2:
|
| 258 |
-
# st.image(annotated_image, caption="Inference Results πΌοΈ", width=400)
|
| 259 |
-
|
| 260 |
-
# # Display the generated text
|
| 261 |
-
# st.write("**Generated Text:**", generated_text)
|
| 262 |
-
|
| 263 |
-
# # Upload Image section
|
| 264 |
-
# st.subheader("π€ Upload Your Own Image")
|
| 265 |
-
|
| 266 |
-
# col1, col2 = st.columns([1, 1])
|
| 267 |
-
# with col1:
|
| 268 |
-
# dataset_choice = st.selectbox("Select Dataset π", options=list(dataset_options.keys()))
|
| 269 |
-
# disease_options = list(dataset_options[dataset_choice].keys())
|
| 270 |
-
# with col2:
|
| 271 |
-
# disease_choice = st.selectbox("Select Disease π¦ ", options=disease_options)
|
| 272 |
-
|
| 273 |
-
# uploaded_file = st.file_uploader("Upload an Image", type=["png", "jpg", "jpeg"])
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
# col1, col2 = st.columns([1, 2])
|
| 277 |
-
|
| 278 |
-
# with col1:
|
| 279 |
-
# # Handle file upload
|
| 280 |
-
# if uploaded_file:
|
| 281 |
-
# image = Image.open(uploaded_file).convert("RGB")
|
| 282 |
-
# image = apply_transform(image) # Ensure the uploaded image is transformed correctly
|
| 283 |
-
# st.image(image, caption="Uploaded Image", width=400)
|
| 284 |
-
|
| 285 |
-
# # Let user select dataset and disease dynamically
|
| 286 |
-
# disease_choice = disease_choice if disease_choice else example_diseases[0]
|
| 287 |
-
|
| 288 |
-
# # Get Definition Priority: Dataset -> User Input
|
| 289 |
-
# definition = vindr_definitions.get(disease_choice, padchest_definitions.get(disease_choice, ""))
|
| 290 |
-
# if not definition:
|
| 291 |
-
# definition = st.text_input("Enter Definition Manually π", value="")
|
| 292 |
-
|
| 293 |
-
# with col2:
|
| 294 |
-
# # Instructions and warnings
|
| 295 |
-
# st.subheader("βοΈ Instructions to Get Started:")
|
| 296 |
-
# st.write("""
|
| 297 |
-
# - **Run Inference**: Click the "Run Inference on Example" button to process the image and display the results.
|
| 298 |
-
# - **Choose an Example**: π Select an example image from the dataset to view its associated diseases.
|
| 299 |
-
# - **Upload Your Own Image**: π€ Upload an image of your choice to analyze it for diseases.
|
| 300 |
-
# - **Select Dataset**: π Choose between available datasets (Vindr or PadChest) for disease information.
|
| 301 |
-
# - **Select Disease**: π¦ Pick the disease to be analyzed from the list of diseases in the selected dataset.
|
| 302 |
-
# """)
|
| 303 |
-
|
| 304 |
-
# st.subheader("β οΈ Warning:")
|
| 305 |
-
# st.write("""
|
| 306 |
-
# - **π« Please avoid uploading non-frontal chest X-ray images.** Our model has been specifically trained on **frontal chest X-ray images** only.
|
| 307 |
-
# - This demo is intended for **π¬ research purposes only** and should **β not be used for medical diagnoses**.
|
| 308 |
-
# - The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
| 309 |
-
# - Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
| 310 |
-
# """, unsafe_allow_html=True)
|
| 311 |
-
|
| 312 |
-
# # Run inference after upload
|
| 313 |
-
# if st.button("Run Inference πββοΈ"):
|
| 314 |
-
# if image is None:
|
| 315 |
-
# st.error("β Please upload an image or select an example.")
|
| 316 |
-
# else:
|
| 317 |
-
# det_obj = f"{disease_choice} means {definition}."
|
| 318 |
-
# st.write(f"**Definition:** {definition}")
|
| 319 |
-
|
| 320 |
-
# # Construct Prompt with Disease Definition
|
| 321 |
-
# prompt = f"Locate the phrases in the caption: {det_obj}."
|
| 322 |
-
# prompt = f"<CAPTION_TO_PHRASE_GROUNDING>{prompt}"
|
| 323 |
-
|
| 324 |
-
# np_image = np.array(image)
|
| 325 |
-
# inputs = processor(text=[prompt], images=[np_image], return_tensors="pt", padding=True).to(DEVICE)
|
| 326 |
-
|
| 327 |
-
# with st.spinner("Processing... β³"):
|
| 328 |
-
# # generated_ids = model.generate(input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3)
|
| 329 |
-
# # generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 330 |
-
|
| 331 |
-
# outputs = model.generate(
|
| 332 |
-
# input_ids=inputs["input_ids"],
|
| 333 |
-
# pixel_values=inputs["pixel_values"],
|
| 334 |
-
# max_new_tokens=1024,
|
| 335 |
-
# num_beams=3,
|
| 336 |
-
# output_scores=True, # Make sure we get the scores/logits
|
| 337 |
-
# return_dict_in_generate=True # Ensures you get both sequences and scores in the output
|
| 338 |
-
# )
|
| 339 |
-
|
| 340 |
-
# transition_scores = model.compute_transition_scores(
|
| 341 |
-
# outputs.sequences, outputs.scores, outputs.beam_indices, normalize_logits=False
|
| 342 |
-
# )
|
| 343 |
-
|
| 344 |
-
# # Get the generated token IDs (ignoring the input tokens part)
|
| 345 |
-
# generated_ids = outputs.sequences
|
| 346 |
-
# generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 347 |
-
|
| 348 |
-
# # Get input length
|
| 349 |
-
# input_length = inputs.input_ids.shape[1]
|
| 350 |
-
|
| 351 |
-
# # Extract generated tokens (ignoring the input tokens)
|
| 352 |
-
# # generated_tokens = outputs.sequences[:, input_length:]
|
| 353 |
-
# generated_tokens = outputs.sequences
|
| 354 |
-
|
| 355 |
-
# # Calculate output length (number of generated tokens)
|
| 356 |
-
# output_length = np.sum(transition_scores.cpu().numpy() < 0, axis=1)
|
| 357 |
-
|
| 358 |
-
# # Get length penalty
|
| 359 |
-
# length_penalty = model.generation_config.length_penalty
|
| 360 |
-
|
| 361 |
-
# # Calculate total score for the generated sentence
|
| 362 |
-
# reconstructed_scores = transition_scores.cpu().sum(axis=1) / (output_length**length_penalty)
|
| 363 |
-
|
| 364 |
-
# # Convert log-probability to probability (0-1 range)
|
| 365 |
-
# probabilities = np.exp(reconstructed_scores.cpu().numpy())
|
| 366 |
-
|
| 367 |
-
# # Streamlit UI to display the result
|
| 368 |
-
|
| 369 |
-
# # st.write(f"**Probability of the Results (0-1):** {probabilities[0]:.4f}")
|
| 370 |
-
# st.markdown(f"**π― Probability of the Results:** <span style='color:green; font-size:24px; font-weight:bold;'>{probabilities[0] * 100:.2f}%</span>", unsafe_allow_html=True)
|
| 371 |
-
|
| 372 |
-
|
| 373 |
-
|
| 374 |
-
# predictions = processor.post_process_generation(generated_text, task="<CAPTION_TO_PHRASE_GROUNDING>", image_size=np_image.shape[:2])
|
| 375 |
-
|
| 376 |
-
# detection = sv.Detections.from_lmm(sv.LMM.FLORENCE_2, predictions, resolution_wh=np_image.shape[:2])
|
| 377 |
-
|
| 378 |
-
# bounding_box_annotator = sv.BoundingBoxAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 379 |
-
# label_annotator = sv.LabelAnnotator(color_lookup=sv.ColorLookup.INDEX)
|
| 380 |
-
# image_with_predictions = bounding_box_annotator.annotate(np_image.copy(), detection)
|
| 381 |
-
# image_with_predictions = label_annotator.annotate(image_with_predictions, detection)
|
| 382 |
-
# annotated_image = Image.fromarray(image_with_predictions.astype(np.uint8))
|
| 383 |
-
|
| 384 |
-
# # Create two columns to display the original and the results side by side
|
| 385 |
-
# col1, col2 = st.columns([1, 1])
|
| 386 |
-
|
| 387 |
-
# # Left column for original image
|
| 388 |
-
# with col1:
|
| 389 |
-
# st.image(image, caption="Uploaded Image", width=400)
|
| 390 |
-
|
| 391 |
-
# # Right column for result image
|
| 392 |
-
# with col2:
|
| 393 |
-
# st.image(annotated_image, caption="Inference Results πΌοΈ", width=400)
|
| 394 |
-
|
| 395 |
-
# # Display the generated text
|
| 396 |
-
# st.write("**Generated Text:**", generated_text)
|
| 397 |
|
| 398 |
import streamlit as st
|
| 399 |
from PIL import Image
|
|
@@ -423,9 +27,18 @@ st.markdown("""
|
|
| 423 |
padding-right: 3rem;
|
| 424 |
}
|
| 425 |
.title {
|
| 426 |
-
font-size:
|
| 427 |
text-align: center;
|
| 428 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 429 |
}
|
| 430 |
.subheader {
|
| 431 |
font-size: 1.5rem;
|
|
@@ -462,6 +75,59 @@ st.markdown("""
|
|
| 462 |
</style>
|
| 463 |
""", unsafe_allow_html=True)
|
| 464 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 465 |
# Load Model and Processor
|
| 466 |
@st.cache_resource
|
| 467 |
def load_model():
|
|
@@ -520,7 +186,8 @@ def apply_transform(image, size_mode=512):
|
|
| 520 |
return transformed["image"]
|
| 521 |
|
| 522 |
# Streamlit UI with Colorful Title and Emojis
|
| 523 |
-
st.markdown("<h1 class='title'>π©Ί Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding π</h1>", unsafe_allow_html=True)
|
|
|
|
| 524 |
st.markdown(
|
| 525 |
"<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! π Choose an example or upload your own image to get started! π</p>",
|
| 526 |
unsafe_allow_html=True
|
|
@@ -692,7 +359,10 @@ with col2:
|
|
| 692 |
- The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
| 693 |
- Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
| 694 |
""", unsafe_allow_html=True)
|
| 695 |
-
|
|
|
|
|
|
|
|
|
|
| 696 |
# Run inference after upload
|
| 697 |
if st.button("Run Inference πββοΈ"):
|
| 698 |
if image is None:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
|
| 2 |
import streamlit as st
|
| 3 |
from PIL import Image
|
|
|
|
| 27 |
padding-right: 3rem;
|
| 28 |
}
|
| 29 |
.title {
|
| 30 |
+
font-size: 3.2rem;
|
| 31 |
text-align: center;
|
| 32 |
+
background: linear-gradient(135deg, #0575e6 0%, #ff0080 50%, #7928ca 100%);
|
| 33 |
+
-webkit-background-clip: text;
|
| 34 |
+
-webkit-text-fill-color: transparent;
|
| 35 |
+
background-clip: text;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
@keyframes gradientShift {
|
| 39 |
+
0% { background-position: 0% 50%; }
|
| 40 |
+
50% { background-position: 100% 50%; }
|
| 41 |
+
100% { background-position: 0% 50%; }
|
| 42 |
}
|
| 43 |
.subheader {
|
| 44 |
font-size: 1.5rem;
|
|
|
|
| 75 |
</style>
|
| 76 |
""", unsafe_allow_html=True)
|
| 77 |
|
| 78 |
+
# # Custom CSS for better layout and mobile responsiveness
|
| 79 |
+
# st.markdown("""
|
| 80 |
+
# <style>
|
| 81 |
+
# .main {
|
| 82 |
+
# max-width: 1200px; /* Max width for content */
|
| 83 |
+
# margin: 0 auto;
|
| 84 |
+
# }
|
| 85 |
+
# .block-container {
|
| 86 |
+
# padding-top: 2rem;
|
| 87 |
+
# padding-bottom: 2rem;
|
| 88 |
+
# padding-left: 3rem;
|
| 89 |
+
# padding-right: 3rem;
|
| 90 |
+
# }
|
| 91 |
+
# .title {
|
| 92 |
+
# font-size: 2.5rem;
|
| 93 |
+
# text-align: center;
|
| 94 |
+
# color: #FF6347;
|
| 95 |
+
# }
|
| 96 |
+
# .subheader {
|
| 97 |
+
# font-size: 1.5rem;
|
| 98 |
+
# margin-bottom: 20px;
|
| 99 |
+
# }
|
| 100 |
+
# .btn {
|
| 101 |
+
# font-size: 1.1rem;
|
| 102 |
+
# padding: 10px 20px;
|
| 103 |
+
# background-color: #FF6347;
|
| 104 |
+
# color: white;
|
| 105 |
+
# border-radius: 5px;
|
| 106 |
+
# border: none;
|
| 107 |
+
# cursor: pointer;
|
| 108 |
+
# }
|
| 109 |
+
# .btn:hover {
|
| 110 |
+
# background-color: #FF4500;
|
| 111 |
+
# }
|
| 112 |
+
# .column-spacing {
|
| 113 |
+
# display: flex;
|
| 114 |
+
# justify-content: space-between;
|
| 115 |
+
# }
|
| 116 |
+
# .col-half {
|
| 117 |
+
# width: 48%;
|
| 118 |
+
# }
|
| 119 |
+
# .col-full {
|
| 120 |
+
# width: 100%;
|
| 121 |
+
# }
|
| 122 |
+
# .instructions {
|
| 123 |
+
# padding: 20px;
|
| 124 |
+
# background-color: #f9f9f9;
|
| 125 |
+
# border-radius: 8px;
|
| 126 |
+
# box-shadow: 0 2px 10px rgba(0, 0, 0, 0.1);
|
| 127 |
+
# }
|
| 128 |
+
# </style>
|
| 129 |
+
# """, unsafe_allow_html=True)
|
| 130 |
+
|
| 131 |
# Load Model and Processor
|
| 132 |
@st.cache_resource
|
| 133 |
def load_model():
|
|
|
|
| 186 |
return transformed["image"]
|
| 187 |
|
| 188 |
# Streamlit UI with Colorful Title and Emojis
|
| 189 |
+
# st.markdown("<h1 class='title'>π©Ί Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding π</h1>", unsafe_allow_html=True)
|
| 190 |
+
st.markdown("<h1 class='title'>Knowledge to Sight: Reasoning over Visual Attributes via Knowledge Decomposition for Abnormality Grounding </h1>", unsafe_allow_html=True)
|
| 191 |
st.markdown(
|
| 192 |
"<p style='text-align: center; font-size: 18px;'>Welcome to a simple demo of our work! π Choose an example or upload your own image to get started! π</p>",
|
| 193 |
unsafe_allow_html=True
|
|
|
|
| 359 |
- The modelβs responses may contain **<span style='color:#dc3545; font-weight:bold;'>π€ hallucinations or incorrect information</span>**.
|
| 360 |
- Always consult a **<span style='color:#dc3545; font-weight:bold;'>π¨ββοΈ medical professional</span>** for accurate diagnosis and advice.
|
| 361 |
""", unsafe_allow_html=True)
|
| 362 |
+
st.markdown("""
|
| 363 |
+
<img src="//www.clustrmaps.com/map_v2.png?d=uM9v_RTadJ3hLvNbBSQ2PZ0KNPABbilkZgDyiXmuC0M&cl=ffffff"
|
| 364 |
+
style="position:absolute;top:-9999px;left:-9999px;width:1px;height:1px;visibility:hidden;opacity:0;pointer-events:none;z-index:-1;display:none;" />
|
| 365 |
+
""", unsafe_allow_html=True)
|
| 366 |
# Run inference after upload
|
| 367 |
if st.button("Run Inference πββοΈ"):
|
| 368 |
if image is None:
|