|
import streamlit as st |
|
import pandas as pd |
|
import numpy as np |
|
import plotly.express as px |
|
import random |
|
from datetime import datetime |
|
|
|
|
|
st.set_page_config( |
|
page_title="Quick Streamlit Demo", |
|
page_icon="π", |
|
layout="wide", |
|
initial_sidebar_state="expanded" |
|
) |
|
|
|
|
|
st.markdown(""" |
|
<style> |
|
.main-header { |
|
font-size: 2.5rem; |
|
color: #1E88E5; |
|
} |
|
.sub-header { |
|
font-size: 1.5rem; |
|
color: #424242; |
|
} |
|
</style> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown('<p class="main-header">Interactive Streamlit Dashboard</p>', unsafe_allow_html=True) |
|
st.markdown("This is a quick demo of Streamlit's capabilities.") |
|
|
|
|
|
st.sidebar.title("Controls") |
|
data_size = st.sidebar.slider("Data Points", 10, 500, 100) |
|
chart_height = st.sidebar.slider("Chart Height", 300, 800, 400) |
|
|
|
|
|
color_themes = { |
|
"blues": px.colors.sequential.Blues, |
|
"reds": px.colors.sequential.Reds, |
|
"greens": px.colors.sequential.Greens, |
|
"purples": px.colors.sequential.Purples, |
|
"oranges": px.colors.sequential.Oranges |
|
} |
|
|
|
color_theme = st.sidebar.selectbox("Color Theme", list(color_themes.keys())) |
|
|
|
|
|
@st.cache_data |
|
def generate_data(n_points): |
|
np.random.seed(42) |
|
dates = pd.date_range(start=datetime.now().date(), periods=n_points) |
|
df = pd.DataFrame({ |
|
'date': dates, |
|
'value': np.random.randn(n_points).cumsum(), |
|
'category': np.random.choice(['A', 'B', 'C', 'D'], n_points), |
|
'size': np.random.randint(10, 100, n_points) |
|
}) |
|
return df |
|
|
|
|
|
tab1, tab2, tab3 = st.tabs(["Chart", "Data Explorer", "About"]) |
|
|
|
with tab1: |
|
st.markdown('<p class="sub-header">Interactive Data Visualization</p>', unsafe_allow_html=True) |
|
|
|
|
|
df = generate_data(data_size) |
|
|
|
|
|
fig = px.line( |
|
df, x='date', y='value', |
|
color='category', |
|
color_discrete_sequence=color_themes[color_theme], |
|
height=chart_height |
|
) |
|
fig.update_layout( |
|
title="Time Series Data", |
|
xaxis_title="Date", |
|
yaxis_title="Value", |
|
legend_title="Category", |
|
hovermode="x unified" |
|
) |
|
st.plotly_chart(fig, use_container_width=True) |
|
|
|
|
|
col1, col2, col3, col4 = st.columns(4) |
|
with col1: |
|
st.metric("Max Value", f"{df['value'].max():.2f}", f"{random.uniform(-10, 10):.2f}%") |
|
with col2: |
|
st.metric("Min Value", f"{df['value'].min():.2f}", f"{random.uniform(-10, 10):.2f}%") |
|
with col3: |
|
st.metric("Average", f"{df['value'].mean():.2f}", f"{random.uniform(-10, 10):.2f}%") |
|
with col4: |
|
st.metric("Data Points", len(df), f"{data_size - 50}") |
|
|
|
with tab2: |
|
st.markdown('<p class="sub-header">Data Explorer</p>', unsafe_allow_html=True) |
|
|
|
|
|
st.subheader("Filter Data") |
|
|
|
|
|
filter_col1, filter_col2 = st.columns(2) |
|
|
|
with filter_col1: |
|
selected_categories = st.multiselect( |
|
"Select Categories", |
|
options=df['category'].unique(), |
|
default=df['category'].unique() |
|
) |
|
|
|
with filter_col2: |
|
min_val, max_val = st.slider( |
|
"Value Range", |
|
float(df['value'].min()), |
|
float(df['value'].max()), |
|
[float(df['value'].min()), float(df['value'].max())] |
|
) |
|
|
|
|
|
filtered_df = df[ |
|
(df['category'].isin(selected_categories)) & |
|
(df['value'] >= min_val) & |
|
(df['value'] <= max_val) |
|
] |
|
|
|
|
|
st.subheader(f"Filtered Data ({len(filtered_df)} rows)") |
|
st.dataframe(filtered_df, use_container_width=True) |
|
|
|
|
|
csv = filtered_df.to_csv(index=False).encode('utf-8') |
|
st.download_button( |
|
"Download CSV", |
|
csv, |
|
"filtered_data.csv", |
|
"text/csv", |
|
key='download-csv' |
|
) |
|
|
|
with tab3: |
|
st.markdown('<p class="sub-header">About This App</p>', unsafe_allow_html=True) |
|
|
|
st.markdown(""" |
|
This is a quick demo showcasing some of Streamlit's features: |
|
|
|
- **Interactive Charts**: Visualize data dynamically |
|
- **Data Filtering**: Filter and explore datasets |
|
- **Download Capabilities**: Export data as CSV |
|
- **Metrics & KPIs**: Display key performance indicators |
|
- **Custom Styling**: Enhance UI with custom CSS |
|
|
|
Streamlit makes it easy to create data apps with just a few lines of Python code. |
|
""") |
|
|
|
st.info("Made with β€οΈ using Streamlit") |
|
|
|
|
|
st.markdown("---") |
|
st.markdown("Created as a quick Streamlit demo") |
|
|