Spaces:
Running
Running
import gradio as gr | |
import pandas as pd | |
import torch | |
from transformers import BertTokenizer, BertModel | |
import numpy as np | |
from sklearn.preprocessing import StandardScaler | |
import logging | |
# Setup logging | |
logging.basicConfig(level=logging.INFO) | |
logger = logging.getLogger(__name__) | |
class EasyLearningPlatform: | |
def __init__(self): | |
self.device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
logger.info(f"Using device: {self.device}") | |
self.initialize_models() | |
def initialize_models(self): | |
"""Initialize BERT model for processing""" | |
try: | |
self.tokenizer = BertTokenizer.from_pretrained('bert-base-uncased') | |
self.model = BertModel.from_pretrained('bert-base-uncased').to(self.device) | |
except Exception as e: | |
logger.error(f"Error initializing models: {str(e)}") | |
raise | |
def process_learning_request( | |
self, | |
name: str, | |
age: int, | |
education_level: str, | |
interests: str, | |
learning_goal: str, | |
preferred_learning_style: str, | |
available_hours_per_week: int | |
): | |
"""Process user input and generate learning recommendations""" | |
try: | |
# Create user profile | |
profile = { | |
'name': name, | |
'age': age, | |
'education': education_level, | |
'interests': interests, | |
'goal': learning_goal, | |
'learning_style': preferred_learning_style, | |
'hours_available': available_hours_per_week | |
} | |
# Generate recommendations based on profile | |
recommendations = self.generate_recommendations(profile) | |
# Create response | |
return { | |
"status": "Success", | |
"personal_learning_path": recommendations['learning_path'], | |
"estimated_completion_time": recommendations['completion_time'], | |
"recommended_resources": recommendations['resources'], | |
"next_steps": recommendations['next_steps'] | |
} | |
except Exception as e: | |
logger.error(f"Error processing request: {str(e)}") | |
return { | |
"status": "Error", | |
"message": "There was an error processing your request. Please try again." | |
} | |
def generate_recommendations(self, profile): | |
"""Generate personalized learning recommendations""" | |
# Simplified recommendation logic | |
learning_styles = { | |
'visual': ['video tutorials', 'infographics', 'diagrams'], | |
'auditory': ['podcasts', 'audio books', 'lectures'], | |
'reading/writing': ['textbooks', 'articles', 'written guides'], | |
'kinesthetic': ['practical exercises', 'hands-on projects', 'interactive tutorials'] | |
} | |
# Get recommended resources based on learning style | |
preferred_resources = learning_styles.get( | |
profile['learning_style'].lower(), | |
learning_styles['visual'] # default to visual if style not found | |
) | |
# Calculate estimated completion time (simplified) | |
weekly_hours = min(max(profile['hours_available'], 1), 168) # Limit between 1 and 168 hours | |
estimated_weeks = 12 # Default to 12-week program | |
return { | |
'learning_path': [ | |
f"Week 1-2: Introduction to {profile['goal']}", | |
f"Week 3-4: Fundamental Concepts", | |
f"Week 5-8: Core Skills Development", | |
f"Week 9-12: Advanced Topics and Projects" | |
], | |
'completion_time': f"{estimated_weeks} weeks at {weekly_hours} hours per week", | |
'resources': preferred_resources, | |
'next_steps': [ | |
"1. Review your personalized learning path", | |
"2. Schedule your study time", | |
"3. Start with the recommended resources", | |
"4. Track your progress weekly" | |
] | |
} | |
def create_interface(self): | |
"""Create the Gradio interface""" | |
# Define the interface | |
iface = gr.Interface( | |
fn=self.process_learning_request, | |
inputs=[ | |
gr.Textbox(label="Name"), | |
gr.Number(label="Age", minimum=1, maximum=120), | |
gr.Dropdown( | |
choices=[ | |
"High School", | |
"Bachelor's Degree", | |
"Master's Degree", | |
"PhD", | |
"Other" | |
], | |
label="Education Level" | |
), | |
gr.Textbox( | |
label="Interests", | |
placeholder="e.g., programming, data science, web development" | |
), | |
gr.Textbox( | |
label="Learning Goal", | |
placeholder="What do you want to learn?" | |
), | |
gr.Dropdown( | |
choices=[ | |
"Visual", | |
"Auditory", | |
"Reading/Writing", | |
"Kinesthetic" | |
], | |
label="Preferred Learning Style", | |
info="How do you learn best?" | |
), | |
gr.Slider( | |
minimum=1, | |
maximum=40, | |
value=10, | |
label="Available Hours per Week", | |
info="How many hours can you dedicate to learning each week?" | |
) | |
], | |
outputs=gr.JSON(label="Your Personalized Learning Plan"), | |
title="AI Learning Path Generator", | |
description=""" | |
Welcome to your personalized learning journey! | |
Fill in your information below to get a customized learning path: | |
1. Enter your basic information | |
2. Specify your learning goals | |
3. Choose your preferred learning style | |
4. Set your weekly time commitment | |
Contact-: AJoshi 91-8847374914 email [email protected] | |
Click submit to generate your personalized learning plan! | |
""", | |
examples=[ | |
[ | |
"John Doe", | |
25, | |
"Bachelor's Degree", | |
"Machine Learning, Python", | |
"Learn Data Science", | |
"Visual", | |
10 | |
], | |
[ | |
"Jane Smith", | |
30, | |
"Master's Degree", | |
"Web Development, JavaScript", | |
"Full Stack Development", | |
"Kinesthetic", | |
15 | |
] | |
] | |
) | |
return iface | |
def main(): | |
# Create and launch the platform | |
platform = EasyLearningPlatform() | |
interface = platform.create_interface() | |
interface.launch(share=True) | |
if __name__ == "__main__": | |
""" | |
# Run these commands in Google Colab first: | |
!pip install gradio transformers torch numpy pandas scikit-learn | |
""" | |
main() |