Spaces:
Runtime error
Runtime error
File size: 3,944 Bytes
2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c 2ff086b a1b258c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 |
import nltk
nltk.download('punkt')
# Third cell - Main implementation
import torch
from transformers import PegasusForConditionalGeneration, PegasusTokenizer
from newspaper import Article
import gradio as gr
import warnings
warnings.filterwarnings('ignore')
# Check if GPU is available
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# Initialize model and tokenizer
model_name = "google/pegasus-large"
try:
tokenizer = PegasusTokenizer.from_pretrained(model_name)
model = PegasusForConditionalGeneration.from_pretrained(model_name)
model = model.to(device)
print("Model loaded successfully!")
except Exception as e:
print(f"Error loading model: {e}")
def fetch_article_text(url):
"""Fetch and extract text from a given URL"""
try:
article = Article(url)
article.download()
article.parse()
return article.text
except Exception as e:
return f"Error fetching article: {e}"
def summarize_text(text, max_length=150, min_length=40):
"""Generate summary using the Pegasus model"""
try:
# Tokenize with padding and truncation
inputs = tokenizer(
text,
max_length=1024,
truncation=True,
padding="max_length",
return_tensors="pt"
).to(device)
# Generate summary
summary_ids = model.generate(
inputs["input_ids"],
max_length=max_length,
min_length=min_length,
length_penalty=2.0,
num_beams=4,
early_stopping=True
)
# Decode and return summary
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
return summary
except Exception as e:
return f"Error generating summary: {e}"
def process_input(input_text, input_type, max_length=150, min_length=40):
"""Process either URL or direct text input"""
try:
if input_type == "URL":
text = fetch_article_text(input_text)
if "Error" in text:
return text
else:
text = input_text
if not text or len(text.strip()) < 100:
return "Error: Input text is too short or empty."
return summarize_text(text, max_length, min_length)
except Exception as e:
return f"Error processing input: {e}"
# Create Gradio interface
def create_interface():
with gr.Blocks(title="Research Article Summarizer") as interface:
gr.Markdown("# Research Article Summarizer")
gr.Markdown("Enter either a URL or paste the article text directly.")
with gr.Row():
input_type = gr.Radio(
choices=["URL", "Text"],
value="URL",
label="Input Type"
)
with gr.Row():
input_text = gr.Textbox(
lines=5,
placeholder="Enter URL or paste article text here...",
label="Input"
)
with gr.Row():
max_length = gr.Slider(
minimum=50,
maximum=500,
value=150,
step=10,
label="Maximum Summary Length"
)
min_length = gr.Slider(
minimum=20,
maximum=200,
value=40,
step=10,
label="Minimum Summary Length"
)
with gr.Row():
submit_btn = gr.Button("Generate Summary")
with gr.Row():
output = gr.Textbox(
lines=5,
label="Generated Summary"
)
submit_btn.click(
fn=process_input,
inputs=[input_text, input_type, max_length, min_length],
outputs=output
)
return interface
# Launch the interface
demo = create_interface()
demo.launch(debug=True, share=True) |