File size: 8,880 Bytes
0e2ab89
 
 
 
 
 
 
881e808
0e2ab89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
# The import statement for OpenAIEmbeddings has been changed
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import uuid
import json
import pytz
from datetime import datetime

# Advanced AI-Powered HR Platform

class AdvancedHRPlatform:
    def __init__(self):
        # Advanced Configuration Management
        self.config = self.load_configuration()
        
        # Ethical AI Framework
        self.ethical_guidelines = self.load_ethical_guidelines()
        
        # Multi-Modal AI Capabilities
        self.ai_models = {
            'performance_analysis': self.load_performance_model(),
            'career_prediction': self.load_career_prediction_model(),
            'sentiment_analysis': self.load_sentiment_model()
        }
        
        # Secure Data Management
        self.data_vault = SecureDataManager()
        
        # Advanced Analytics Engine
        self.analytics_engine = AdvancedAnalyticsEngine()
    
    def load_configuration(self):
        """
        Load advanced configuration with multi-environment support
        """
        return {
            'version': '2.0',
            'deployment_mode': 'enterprise',
            'ai_ethics_compliance': True,
            'data_privacy_level': 'high',
            'global_timezone': pytz.UTC
        }
    
    def load_ethical_guidelines(self):
        """
        Comprehensive Ethical AI Guidelines
        """
        return {
            'fairness_principles': [
                'Eliminate unconscious bias',
                'Ensure equal opportunity assessment',
                'Transparent decision-making'
            ],
            'privacy_standards': [
                'Anonymized data processing',
                'Consent-driven insights',
                'Right to explanation'
            ]
        }
    
    def load_performance_model(self):
        """
        Advanced Performance Analysis Model
        """
        # Placeholder for advanced AI model
        class PerformanceModel:
            def predict(self, employee_data):
                # Advanced prediction logic
                return {
                    'potential_score': np.random.uniform(0.7, 0.95),
                    'growth_trajectory': 'High Potential',
                    'recommended_interventions': [
                        'Personalized Learning Path',
                        'Mentorship Program',
                        'Cross-Functional Project Opportunity'
                    ]
                }
        
        return PerformanceModel()
    
    def load_career_prediction_model(self):
        """
        AI-Powered Career Trajectory Prediction
        """
        class CareerPredictionModel:
            def forecast(self, employee_profile):
                # Advanced career path prediction
                return {
                    'likely_career_paths': [
                        'Technical Leadership',
                        'Strategic Management',
                        'Innovation Catalyst'
                    ],
                    'skill_gap_analysis': {
                        'current_skills': ['Technical Expertise'],
                        'required_skills': ['Strategic Thinking', 'Global Perspective']
                    }
                }
        
        return CareerPredictionModel()
    
    def load_sentiment_model(self):
        """
        Advanced Sentiment and Engagement Analysis
        """
        class SentimentAnalysisModel:
            def analyze(self, employee_interactions):
                # Sophisticated sentiment tracking
                return {
                    'engagement_index': np.random.uniform(0.6, 0.9),
                    'emotional_intelligence_insights': [
                        'High Collaboration Potential',
                        'Adaptive Communication Style'
                    ]
                }
        
        return SentimentAnalysisModel()

class SecureDataManager:
    """
    Advanced Secure Data Management
    """
    def __init__(self):
        self.encryption_key = str(uuid.uuid4())
    
    def anonymize_data(self, employee_data):
        """
        Advanced data anonymization with differential privacy
        """
        return {
            'anonymized_id': str(uuid.uuid4()),
            'role_category': employee_data.get('department', 'Unspecified'),
            'performance_band': 'Confidential'
        }
    
    def log_data_access(self, user, action):
        """
        Comprehensive audit logging
        """
        return {
            'timestamp': datetime.now(pytz.UTC),
            'user': user,
            'action': action,
            'compliance_status': 'Verified'
        }

class AdvancedAnalyticsEngine:
    """
    Predictive and Prescriptive Analytics
    """
    def generate_organizational_insights(self, employee_data):
        """
        Generate advanced organizational intelligence
        """
        return {
            'talent_density_map': self.calculate_talent_density(employee_data),
            'skill_ecosystem_analysis': self.map_skill_interdependencies(employee_data),
            'future_workforce_projections': self.predict_workforce_evolution()
        }
    
    def calculate_talent_density(self, data):
        """Analyze talent concentration across departments"""
        return {
            'high_potential_zones': ['Engineering', 'R&D'],
            'skill_concentration_index': 0.75
        }
    
    def map_skill_interdependencies(self, data):
        """Advanced skill network analysis"""
        return {
            'cross_functional_skills': ['AI', 'Data Science', 'Strategic Leadership'],
            'emerging_skill_clusters': ['Quantum Computing', 'Ethical AI']
        }
    
    def predict_workforce_evolution(self):
        """Futuristic workforce trend prediction"""
        return {
            'emerging_roles': [
                'AI Ethics Consultant',
                'Human-AI Collaboration Specialist',
                'Sustainable Innovation Architect'
            ],
            'skills_of_the_future': [
                'Adaptive Learning',
                'Complex Problem Solving',
                'Emotional Intelligence'
            ]
        }

def create_futuristic_hr_interface():
    """
    Next-Generation HR Platform Interface
    """
    platform = AdvancedHRPlatform()
    
    def generate_comprehensive_employee_insights(employee_id):
        # Simulate comprehensive employee profile
        employee_data = {
            'id': employee_id,
            'department': 'Engineering',
            'tenure': 3
        }
        
        # Multi-dimensional insights generation
        performance_insights = platform.ai_models['performance_analysis'].predict(employee_data)
        career_predictions = platform.ai_models['career_prediction'].forecast(employee_data)
        sentiment_analysis = platform.ai_models['sentiment_analysis'].analyze({})
        
        # Anonymized data processing
        anonymized_profile = platform.data_vault.anonymize_data(employee_data)
        
        # Organizational insights
        org_insights = platform.analytics_engine.generate_organizational_insights([employee_data])
        
        # Comprehensive report generation
        comprehensive_report = f"""
        πŸš€ Holistic Employee Intelligence Report 🧠

        Personal Development:
        {json.dumps(performance_insights, indent=2)}

        Career Trajectory:
        {json.dumps(career_predictions, indent=2)}

        Engagement Insights:
        {json.dumps(sentiment_analysis, indent=2)}

        Organizational Context:
        {json.dumps(org_insights, indent=2)}

        Compliance & Privacy:
        Anonymized Profile: {json.dumps(anonymized_profile, indent=2)}
        Ethical Guidelines Adherence: βœ“ Compliant
        """
        
        return comprehensive_report
    
    # Advanced Gradio Interface
    with gr.Blocks(theme='huggingface') as demo:
        gr.Markdown("# 🌐 Intelligent Workforce Insights Platform")
        
        with gr.Row():
            employee_input = gr.Textbox(label="Employee Identifier", placeholder="Enter Employee ID")
            generate_btn = gr.Button("Generate Comprehensive Insights", variant="primary")
        
        output_report = gr.Markdown(label="Comprehensive Employee Intelligence")
        
        generate_btn.click(
            fn=generate_comprehensive_employee_insights,
            inputs=employee_input,
            outputs=output_report
        )
    
    return demo

def main():
    hr_platform = create_futuristic_hr_interface()
    hr_platform.launch(debug=True)

if __name__ == "__main__":
    main()