Spaces:
Sleeping
Sleeping
File size: 8,880 Bytes
0e2ab89 881e808 0e2ab89 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 |
import os
import torch
import gradio as gr
import pandas as pd
import numpy as np
from transformers import AutoModelForCausalLM, AutoTokenizer
# The import statement for OpenAIEmbeddings has been changed
from transformers import AutoTokenizer, AutoModel
from sklearn.metrics.pairwise import cosine_similarity
import uuid
import json
import pytz
from datetime import datetime
# Advanced AI-Powered HR Platform
class AdvancedHRPlatform:
def __init__(self):
# Advanced Configuration Management
self.config = self.load_configuration()
# Ethical AI Framework
self.ethical_guidelines = self.load_ethical_guidelines()
# Multi-Modal AI Capabilities
self.ai_models = {
'performance_analysis': self.load_performance_model(),
'career_prediction': self.load_career_prediction_model(),
'sentiment_analysis': self.load_sentiment_model()
}
# Secure Data Management
self.data_vault = SecureDataManager()
# Advanced Analytics Engine
self.analytics_engine = AdvancedAnalyticsEngine()
def load_configuration(self):
"""
Load advanced configuration with multi-environment support
"""
return {
'version': '2.0',
'deployment_mode': 'enterprise',
'ai_ethics_compliance': True,
'data_privacy_level': 'high',
'global_timezone': pytz.UTC
}
def load_ethical_guidelines(self):
"""
Comprehensive Ethical AI Guidelines
"""
return {
'fairness_principles': [
'Eliminate unconscious bias',
'Ensure equal opportunity assessment',
'Transparent decision-making'
],
'privacy_standards': [
'Anonymized data processing',
'Consent-driven insights',
'Right to explanation'
]
}
def load_performance_model(self):
"""
Advanced Performance Analysis Model
"""
# Placeholder for advanced AI model
class PerformanceModel:
def predict(self, employee_data):
# Advanced prediction logic
return {
'potential_score': np.random.uniform(0.7, 0.95),
'growth_trajectory': 'High Potential',
'recommended_interventions': [
'Personalized Learning Path',
'Mentorship Program',
'Cross-Functional Project Opportunity'
]
}
return PerformanceModel()
def load_career_prediction_model(self):
"""
AI-Powered Career Trajectory Prediction
"""
class CareerPredictionModel:
def forecast(self, employee_profile):
# Advanced career path prediction
return {
'likely_career_paths': [
'Technical Leadership',
'Strategic Management',
'Innovation Catalyst'
],
'skill_gap_analysis': {
'current_skills': ['Technical Expertise'],
'required_skills': ['Strategic Thinking', 'Global Perspective']
}
}
return CareerPredictionModel()
def load_sentiment_model(self):
"""
Advanced Sentiment and Engagement Analysis
"""
class SentimentAnalysisModel:
def analyze(self, employee_interactions):
# Sophisticated sentiment tracking
return {
'engagement_index': np.random.uniform(0.6, 0.9),
'emotional_intelligence_insights': [
'High Collaboration Potential',
'Adaptive Communication Style'
]
}
return SentimentAnalysisModel()
class SecureDataManager:
"""
Advanced Secure Data Management
"""
def __init__(self):
self.encryption_key = str(uuid.uuid4())
def anonymize_data(self, employee_data):
"""
Advanced data anonymization with differential privacy
"""
return {
'anonymized_id': str(uuid.uuid4()),
'role_category': employee_data.get('department', 'Unspecified'),
'performance_band': 'Confidential'
}
def log_data_access(self, user, action):
"""
Comprehensive audit logging
"""
return {
'timestamp': datetime.now(pytz.UTC),
'user': user,
'action': action,
'compliance_status': 'Verified'
}
class AdvancedAnalyticsEngine:
"""
Predictive and Prescriptive Analytics
"""
def generate_organizational_insights(self, employee_data):
"""
Generate advanced organizational intelligence
"""
return {
'talent_density_map': self.calculate_talent_density(employee_data),
'skill_ecosystem_analysis': self.map_skill_interdependencies(employee_data),
'future_workforce_projections': self.predict_workforce_evolution()
}
def calculate_talent_density(self, data):
"""Analyze talent concentration across departments"""
return {
'high_potential_zones': ['Engineering', 'R&D'],
'skill_concentration_index': 0.75
}
def map_skill_interdependencies(self, data):
"""Advanced skill network analysis"""
return {
'cross_functional_skills': ['AI', 'Data Science', 'Strategic Leadership'],
'emerging_skill_clusters': ['Quantum Computing', 'Ethical AI']
}
def predict_workforce_evolution(self):
"""Futuristic workforce trend prediction"""
return {
'emerging_roles': [
'AI Ethics Consultant',
'Human-AI Collaboration Specialist',
'Sustainable Innovation Architect'
],
'skills_of_the_future': [
'Adaptive Learning',
'Complex Problem Solving',
'Emotional Intelligence'
]
}
def create_futuristic_hr_interface():
"""
Next-Generation HR Platform Interface
"""
platform = AdvancedHRPlatform()
def generate_comprehensive_employee_insights(employee_id):
# Simulate comprehensive employee profile
employee_data = {
'id': employee_id,
'department': 'Engineering',
'tenure': 3
}
# Multi-dimensional insights generation
performance_insights = platform.ai_models['performance_analysis'].predict(employee_data)
career_predictions = platform.ai_models['career_prediction'].forecast(employee_data)
sentiment_analysis = platform.ai_models['sentiment_analysis'].analyze({})
# Anonymized data processing
anonymized_profile = platform.data_vault.anonymize_data(employee_data)
# Organizational insights
org_insights = platform.analytics_engine.generate_organizational_insights([employee_data])
# Comprehensive report generation
comprehensive_report = f"""
π Holistic Employee Intelligence Report π§
Personal Development:
{json.dumps(performance_insights, indent=2)}
Career Trajectory:
{json.dumps(career_predictions, indent=2)}
Engagement Insights:
{json.dumps(sentiment_analysis, indent=2)}
Organizational Context:
{json.dumps(org_insights, indent=2)}
Compliance & Privacy:
Anonymized Profile: {json.dumps(anonymized_profile, indent=2)}
Ethical Guidelines Adherence: β Compliant
"""
return comprehensive_report
# Advanced Gradio Interface
with gr.Blocks(theme='huggingface') as demo:
gr.Markdown("# π Intelligent Workforce Insights Platform")
with gr.Row():
employee_input = gr.Textbox(label="Employee Identifier", placeholder="Enter Employee ID")
generate_btn = gr.Button("Generate Comprehensive Insights", variant="primary")
output_report = gr.Markdown(label="Comprehensive Employee Intelligence")
generate_btn.click(
fn=generate_comprehensive_employee_insights,
inputs=employee_input,
outputs=output_report
)
return demo
def main():
hr_platform = create_futuristic_hr_interface()
hr_platform.launch(debug=True)
if __name__ == "__main__":
main() |