|
import csv |
|
import os |
|
from datetime import datetime |
|
from typing import Optional |
|
|
|
import gradio as gr |
|
from huggingface_hub import HfApi, Repository |
|
|
|
from onnx_export import convert |
|
|
|
DATASET_REPO_URL = "https://huggingface.co/datasets/optimum/exporters" |
|
DATA_FILENAME = "data.csv" |
|
DATA_FILE = os.path.join("data", DATA_FILENAME) |
|
|
|
HF_TOKEN = os.environ.get("HF_WRITE_TOKEN") |
|
|
|
DATADIR = "exporters_data" |
|
|
|
repo: Optional[Repository] = None |
|
if HF_TOKEN: |
|
repo = Repository(local_dir=DATADIR, clone_from=DATASET_REPO_URL, token=HF_TOKEN) |
|
|
|
|
|
def onnx_export(token: str, model_id: str, task: str) -> str: |
|
if token == "" or model_id == "": |
|
return """ |
|
### Invalid input π |
|
|
|
Please fill a token and model name. |
|
""" |
|
try: |
|
api = HfApi(token=token) |
|
|
|
error, commit_info = convert(api=api, model_id=model_id, task=task) |
|
if error != "0": |
|
return error |
|
|
|
print("[commit_info]", commit_info) |
|
|
|
|
|
if repo is not None: |
|
repo.git_pull(rebase=True) |
|
with open(os.path.join(DATADIR, DATA_FILE), "a") as csvfile: |
|
writer = csv.DictWriter( |
|
csvfile, fieldnames=["model_id", "pr_url", "time"] |
|
) |
|
writer.writerow( |
|
{ |
|
"model_id": model_id, |
|
"pr_url": commit_info.pr_url, |
|
"time": str(datetime.now()), |
|
} |
|
) |
|
commit_url = repo.push_to_hub() |
|
print("[dataset]", commit_url) |
|
|
|
return f"#### Success π₯ Yay! This model was successfully converted and a PR was open using your token, here: [{commit_info.pr_url}]({commit_info.pr_url})" |
|
except Exception as e: |
|
return f"#### Error: {e}" |
|
|
|
|
|
TTILE_IMAGE = """ |
|
<div |
|
style=" |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
width: 50%; |
|
" |
|
> |
|
<img src="https://huggingface.co/spaces/optimum/exporters/resolve/main/clean_hf_onnx.png"/> |
|
</div> |
|
""" |
|
|
|
TITLE = """ |
|
<div |
|
style=" |
|
display: inline-flex; |
|
align-items: center; |
|
text-align: center; |
|
max-width: 1400px; |
|
gap: 0.8rem; |
|
font-size: 2.2rem; |
|
" |
|
> |
|
<h1 style="font-weight: 900; margin-bottom: 10px; margin-top: 10px;"> |
|
Convert transformers model to ONNX with π€ Optimum exporters ποΈ (Beta) |
|
</h1> |
|
</div> |
|
""" |
|
|
|
|
|
DESCRIPTION = """ |
|
This Space allows to automatically convert to ONNX π€ transformers PyTorch models hosted on the Hugging Face Hub. It opens a PR on the target model, and it is up to the owner of the original model |
|
to merge the PR to allow people to leverage the ONNX standard to share and use the model on a wide range of devices! |
|
|
|
Once converted, the model can for example be used in the [π€ Optimum](https://huggingface.co/docs/optimum/) library following closely the transormers API. |
|
Check out [this guide](https://huggingface.co/docs/optimum/main/en/onnxruntime/usage_guides/models) to see how! |
|
|
|
The steps are the following: |
|
- Paste a read-access token from [https://huggingface.co/settings/tokens](https://huggingface.co/settings/tokens). Read access is enough given that we will open a PR against the source repo. |
|
- Input a model id from the Hub (for example: [textattack/distilbert-base-cased-CoLA](https://huggingface.co/textattack/distilbert-base-cased-CoLA)) |
|
- Click "Convert to ONNX" |
|
- That's it! You'll get feedback if it works or not, and if it worked, you'll get the URL of the opened PR! |
|
|
|
Note: in case the model to convert is larger than 2 GB, it will be saved in a subfolder called `onnx/`. To load it from Optimum, the argument `subfolder="onnx"` should be provided. |
|
""" |
|
|
|
with gr.Blocks() as demo: |
|
with gr.Row(): |
|
with gr.Column(scale=50): |
|
gr.HTML(TTILE_IMAGE) |
|
gr.HTML(TITLE) |
|
gr.Markdown(DESCRIPTION) |
|
|
|
with gr.Column(scale=50): |
|
input_token = gr.Textbox(max_lines=1, label="Hugging Face token") |
|
input_model = gr.Textbox( |
|
max_lines=1, |
|
label="Model name", |
|
placeholder="textattack/distilbert-base-cased-CoLA", |
|
) |
|
input_task = gr.Textbox( |
|
value="auto", |
|
max_lines=1, |
|
label='Task (can be left to "auto", will be automatically inferred)', |
|
) |
|
|
|
btn = gr.Button("Convert to ONNX") |
|
output = gr.Markdown(label="Output") |
|
|
|
btn.click( |
|
fn=onnx_export, inputs=[input_token, input_model, input_task], outputs=output |
|
) |
|
|
|
""" |
|
demo = gr.Interface( |
|
title="", |
|
description=DESCRIPTION, |
|
allow_flagging="never", |
|
article="Check out the [π€ Optimum repoository on GitHub](https://github.com/huggingface/optimum) as well!", |
|
inputs=[ |
|
gr.Text(max_lines=1, label="Hugging Face token"), |
|
gr.Text(max_lines=1, label="Model name", placeholder="textattack/distilbert-base-cased-CoLA"), |
|
gr.Text(value="auto", max_lines=1, label="Task (can be left blank, will be automatically inferred)") |
|
], |
|
outputs=[gr.Markdown(label="output")], |
|
fn=onnx_export, |
|
) |
|
""" |
|
|
|
demo.launch() |
|
|