NS_AI_LABS / app.py
Anustup Mukherjee
app
147feb7
raw
history blame
1.18 kB
import whisper
import gradio as gr
import time
import os
'''model = whisper.load_model("base")
print(model.device)'''
def speechtotext(tmp_filename, uploaded):
try:
source = uploaded if uploaded is not None else tmp_filename
result = os.system("whisper" + source + " --language Hindi " + " --task translate ")
return f'Detected language: {Language.make(language=result["language"]).display_name()}\n\n ' \
f'You said: {result["text"]}'
except:
return "Unable to generate translation"
gr.Interface(
title="NS-AI-Labs Custom Whisper",
thumbnail="https://cdn.openai.com/whisper/asr-summary-of-model-architecture-desktop.svg",
css="""
.gr-prose p{text-align: center;}
.gr-button {background: black;color: white}
""",
description="we customised whisper with some additional ASR layers , speak in any language we are here to get it "
"recognised !",
fn=speechtotext,
inputs=[
gr.Audio(label="Record your voice on your mic", source="microphone", type="filepath"),
gr.Audio(source="upload", type="filepath", label="Upload Audio")],
outputs="text").launch()