Spaces:
Sleeping
Sleeping
import whisper | |
import gradio as gr | |
import time | |
import os | |
'''model = whisper.load_model("base") | |
print(model.device)''' | |
def speechtotext(tmp_filename, uploaded): | |
try: | |
source = uploaded if uploaded is not None else tmp_filename | |
result = os.system("whisper" + source + " --language Hindi " + " --task translate ") | |
return f'Detected language: {Language.make(language=result["language"]).display_name()}\n\n ' \ | |
f'You said: {result["text"]}' | |
except: | |
return "Unable to generate translation" | |
gr.Interface( | |
title="NS-AI-Labs Custom Whisper", | |
thumbnail="https://cdn.openai.com/whisper/asr-summary-of-model-architecture-desktop.svg", | |
css=""" | |
.gr-prose p{text-align: center;} | |
.gr-button {background: black;color: white} | |
""", | |
description="we customised whisper with some additional ASR layers , speak in any language we are here to get it " | |
"recognised !", | |
fn=speechtotext, | |
inputs=[ | |
gr.Audio(label="Record your voice on your mic", source="microphone", type="filepath"), | |
gr.Audio(source="upload", type="filepath", label="Upload Audio")], | |
outputs="text").launch() | |