Spaces:
Sleeping
Sleeping
import streamlit as st | |
from sentence_transformers import CrossEncoder | |
# Title and instructions | |
st.title("Typosquatting Detection App") | |
st.write("Enter two domains to check if one is a typosquatted variant of the other.") | |
# Model selection | |
model_choice = st.selectbox("Choose a model for detection:", ["CE-typosquat-detect-Canine", "CE-typosquat-detect"]) | |
# Load model after selection | |
if model_choice: | |
model_path = f"./{model_choice}" | |
model = CrossEncoder(model_path) | |
# User inputs for domains and threshold | |
domain = st.text_input("Enter the legitimate domain name:") | |
typosquat = st.text_input("Enter the potentially typosquatted domain name:") | |
threshold = st.slider("Set detection threshold", 0.0, 1.0, 0.5) | |
# Typosquatting detection on button click | |
if st.button("Check Typosquatting"): | |
if domain and typosquat: | |
inputs = [(typosquat, domain)] | |
prediction = model.predict(inputs)[0] | |
# Display result | |
if prediction > threshold: | |
st.success(f"The model predicts that '{typosquat}' is likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") | |
else: | |
st.warning(f"The model predicts that '{typosquat}' is NOT likely a typosquatted version of '{domain}' with a score of {prediction:.4f}.") | |
else: | |
st.error("Please enter both a legitimate domain and a potentially typosquatted domain.") | |