File size: 14,603 Bytes
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3fe52c
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db1cf9
eca4b03
 
 
 
 
 
 
 
 
 
 
 
 
7db1cf9
eca4b03
7db1cf9
eca4b03
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72277b5
 
 
 
 
 
d3fe52c
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
30744bc
9c17134
72277b5
 
 
 
 
 
763a8af
72277b5
 
 
 
 
9c17134
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7db1cf9
9c17134
 
eca4b03
 
 
 
7db1cf9
eca4b03
 
 
 
 
 
 
 
9c17134
eca4b03
9c17134
 
 
 
 
eca4b03
 
 
 
9c17134
eca4b03
 
 
 
 
 
 
 
 
 
 
 
72277b5
 
 
 
 
 
 
 
d3fe52c
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca4b03
 
 
72277b5
 
 
 
 
d3fe52c
72277b5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eca4b03
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
import sys
import logging
import io
import soundfile as sf
import math
try: 
    import torch
except ImportError: 
    torch = None
from typing import List
import numpy as np
from timed_objects import ASRToken

logger = logging.getLogger(__name__)

class ASRBase:
    sep = " "  # join transcribe words with this character (" " for whisper_timestamped,
              # "" for faster-whisper because it emits the spaces when needed)

    def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr):
        self.logfile = logfile
        self.transcribe_kargs = {}
        if lan == "auto":
            self.original_language = None
        else:
            self.original_language = lan
        self.model = self.load_model(modelsize, cache_dir, model_dir)

    def with_offset(self, offset: float) -> ASRToken:
        # This method is kept for compatibility (typically you will use ASRToken.with_offset)
        return ASRToken(self.start + offset, self.end + offset, self.text)

    def __repr__(self):
        return f"ASRToken(start={self.start:.2f}, end={self.end:.2f}, text={self.text!r})"

    def load_model(self, modelsize, cache_dir, model_dir):
        raise NotImplementedError("must be implemented in the child class")

    def transcribe(self, audio, init_prompt=""):
        raise NotImplementedError("must be implemented in the child class")

    def use_vad(self):
        raise NotImplementedError("must be implemented in the child class")


class WhisperTimestampedASR(ASRBase):
    """Uses whisper_timestamped as the backend."""
    sep = " "

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        print("Loading whisper_timestamped model")
        import whisper
        import whisper_timestamped
        from whisper_timestamped import transcribe_timestamped

        self.transcribe_timestamped = transcribe_timestamped
        if model_dir is not None:
            logger.debug("ignoring model_dir, not implemented")
        return whisper.load_model(modelsize, download_root=cache_dir)

    def transcribe(self, audio, init_prompt=""):
        result = self.transcribe_timestamped(
            self.model,
            audio,
            language=self.original_language,
            initial_prompt=init_prompt,
            verbose=None,
            condition_on_previous_text=True,
            **self.transcribe_kargs,
        )
        return result

    def ts_words(self, r) -> List[ASRToken]:
        """
        Converts the whisper_timestamped result to a list of ASRToken objects.
        """
        tokens = []
        for segment in r["segments"]:
            for word in segment["words"]:
                token = ASRToken(word["start"], word["end"], word["text"])
                tokens.append(token)
        return tokens

    def segments_end_ts(self, res) -> List[float]:
        return [segment["end"] for segment in res["segments"]]

    def use_vad(self):
        self.transcribe_kargs["vad"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"

    def detect_language(self, audio_file_path):
        import whisper
        """
        Detect the language of the audio using Whisper's language detection.
        
        Args:
            audio (np.ndarray): Audio data as numpy array
            
        Returns:
            tuple: (detected_language, confidence, probabilities)
                - detected_language (str): The detected language code
                - confidence (float): Confidence score for the detected language
                - probabilities (dict): Dictionary of language probabilities
        """
        try:            
            # Pad or trim audio to the correct length
            audio = whisper.load_audio(audio_file_path)
            audio = whisper.pad_or_trim(audio)
            
            # Create mel spectrogram with correct dimensions
            mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(self.model.device)
            
            # Detect language
            _, probs = self.model.detect_language(mel)
            detected_lang = max(probs, key=probs.get)
            confidence = probs[detected_lang]
            
            return detected_lang, confidence, probs
            
        except Exception as e:
            logger.error(f"Error in language detection: {e}")
            raise


class FasterWhisperASR(ASRBase):
    """Uses faster-whisper as the backend."""
    sep = ""

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        print("Loading faster-whisper model")
        from faster_whisper import WhisperModel

        if model_dir is not None:
            logger.debug(f"Loading whisper model from model_dir {model_dir}. "
                         f"modelsize and cache_dir parameters are not used.")
            model_size_or_path = model_dir
        elif modelsize is not None:
            model_size_or_path = modelsize
        else:
            raise ValueError("Either modelsize or model_dir must be set")
        device = "cuda" if torch and torch.cuda.is_available() else "cpu"
        compute_type = "float16" if device == "cuda" else "float32"

        print(f"Loading whisper model {model_size_or_path} on {device} with compute type {compute_type}")

        model = WhisperModel(
            model_size_or_path,
            device=device,
            compute_type=compute_type,
            download_root=cache_dir,
        )
        
        return model

    def transcribe(self, audio: np.ndarray, init_prompt: str = "") -> list:
        segments, info = self.model.transcribe(
            audio,
            language=None,
            initial_prompt=init_prompt,
            beam_size=5,
            word_timestamps=True,
            condition_on_previous_text=True,
            **self.transcribe_kargs,
        )
        return list(segments)

    def ts_words(self, segments) -> List[ASRToken]:
        tokens = []
        for segment in segments:
            if segment.no_speech_prob > 0.9:
                continue
            for word in segment.words:
                token = ASRToken(word.start, word.end, word.word, probability=word.probability)
                tokens.append(token)
        return tokens

    def segments_end_ts(self, segments) -> List[float]:
        return [segment.end for segment in segments]

    def use_vad(self):
        self.transcribe_kargs["vad_filter"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"

    def detect_language(self, audio_file_path):

        from faster_whisper.audio import decode_audio
        """
        Detect the language of the audio using faster-whisper's language detection.
        
        Args:
            audio_file_path: Path to the audio file
            
        Returns:
            tuple: (detected_language, confidence, probabilities)
                - detected_language (str): The detected language code
                - confidence (float): Confidence score for the detected language
                - probabilities (dict): Dictionary of language probabilities
        """
        try:
            audio = decode_audio(audio_file_path, sampling_rate=self.model.feature_extractor.sampling_rate)
            
            # Calculate total number of segments (each segment is 30 seconds)
            audio_duration = len(audio) / self.model.feature_extractor.sampling_rate
            segments_num = max(1, int(audio_duration / 30))  # At least 1 segment
            logger.info(f"Audio duration: {audio_duration:.2f}s, using {segments_num} segments for language detection")
                
            # Use faster-whisper's detect_language method
            language, language_probability, all_language_probs = self.model.detect_language(
                audio=audio,
                vad_filter=False,  # Disable VAD for language detection
                language_detection_segments=segments_num,  # Use all possible segments
                language_detection_threshold=0.5  # Default threshold
            )
            
            # Convert list of tuples to dictionary for consistent return format
            probs = {lang: prob for lang, prob in all_language_probs}
            
            return language, language_probability, probs
            
        except Exception as e:
            logger.error(f"Error in language detection: {e}")
            raise


class MLXWhisper(ASRBase):
    """
    Uses MLX Whisper optimized for Apple Silicon.
    """
    sep = ""

    def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
        print("Loading mlx whisper model")
        from mlx_whisper.transcribe import ModelHolder, transcribe
        import mlx.core as mx

        if model_dir is not None:
            logger.debug(f"Loading whisper model from model_dir {model_dir}. modelsize parameter is not used.")
            model_size_or_path = model_dir
        elif modelsize is not None:
            model_size_or_path = self.translate_model_name(modelsize)
            logger.debug(f"Loading whisper model {modelsize}. You use mlx whisper, so {model_size_or_path} will be used.")
        else:
            raise ValueError("Either modelsize or model_dir must be set")

        self.model_size_or_path = model_size_or_path
        dtype = mx.float16
        ModelHolder.get_model(model_size_or_path, dtype)
        return transcribe

    def translate_model_name(self, model_name):
        model_mapping = {
            "tiny.en": "mlx-community/whisper-tiny.en-mlx",
            "tiny": "mlx-community/whisper-tiny-mlx",
            "base.en": "mlx-community/whisper-base.en-mlx",
            "base": "mlx-community/whisper-base-mlx",
            "small.en": "mlx-community/whisper-small.en-mlx",
            "small": "mlx-community/whisper-small-mlx",
            "medium.en": "mlx-community/whisper-medium.en-mlx",
            "medium": "mlx-community/whisper-medium-mlx",
            "large-v1": "mlx-community/whisper-large-v1-mlx",
            "large-v2": "mlx-community/whisper-large-v2-mlx",
            "large-v3": "mlx-community/whisper-large-v3-mlx",
            "large-v3-turbo": "mlx-community/whisper-large-v3-turbo",
            "large": "mlx-community/whisper-large-mlx",
        }
        mlx_model_path = model_mapping.get(model_name)
        if mlx_model_path:
            return mlx_model_path
        else:
            raise ValueError(f"Model name '{model_name}' is not recognized or not supported.")

    def transcribe(self, audio, init_prompt=""):
        if self.transcribe_kargs:
            logger.warning("Transcribe kwargs (vad, task) are not compatible with MLX Whisper and will be ignored.")
        segments = self.model(
            audio,
            language=self.original_language,
            initial_prompt=init_prompt,
            word_timestamps=True,
            condition_on_previous_text=True,
            path_or_hf_repo=self.model_size_or_path,
        )
        return segments.get("segments", [])

    def ts_words(self, segments) -> List[ASRToken]:
        tokens = []
        for segment in segments:
            if segment.get("no_speech_prob", 0) > 0.9:
                continue
            for word in segment.get("words", []):
                token = ASRToken(word["start"], word["end"], word["word"], probability=word["probability"])
                tokens.append(token)
        return tokens

    def segments_end_ts(self, res) -> List[float]:
        return [s["end"] for s in res]

    def use_vad(self):
        self.transcribe_kargs["vad_filter"] = True

    def set_translate_task(self):
        self.transcribe_kargs["task"] = "translate"
    
    def detect_language(self, audio):
        raise NotImplementedError("MLX Whisper does not support language detection.")


class OpenaiApiASR(ASRBase):
    """Uses OpenAI's Whisper API for transcription."""
    def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
        print("Loading openai api model")
        self.logfile = logfile
        self.modelname = "whisper-1"
        self.original_language = None if lan == "auto" else lan
        self.response_format = "verbose_json"
        self.temperature = temperature
        self.load_model()
        self.use_vad_opt = False
        self.task = "transcribe"

    def load_model(self, *args, **kwargs):
        from openai import OpenAI
        self.client = OpenAI()
        self.transcribed_seconds = 0

    def ts_words(self, segments) -> List[ASRToken]:
        """
        Converts OpenAI API response words into ASRToken objects while
        optionally skipping words that fall into no-speech segments.
        """
        no_speech_segments = []
        if self.use_vad_opt:
            for segment in segments.segments:
                if segment.no_speech_prob > 0.8:
                    no_speech_segments.append((segment.start, segment.end))
        tokens = []
        for word in segments.words:
            start = word.start
            end = word.end
            if any(s[0] <= start <= s[1] for s in no_speech_segments):
                continue
            tokens.append(ASRToken(start, end, word.word))
        return tokens

    def segments_end_ts(self, res) -> List[float]:
        return [s.end for s in res.words]

    def transcribe(self, audio_data, prompt=None, *args, **kwargs):
        buffer = io.BytesIO()
        buffer.name = "temp.wav"
        sf.write(buffer, audio_data, samplerate=16000, format="WAV", subtype="PCM_16")
        buffer.seek(0)
        self.transcribed_seconds += math.ceil(len(audio_data) / 16000)
        params = {
            "model": self.modelname,
            "file": buffer,
            "response_format": self.response_format,
            "temperature": self.temperature,
            "timestamp_granularities": ["word", "segment"],
        }
        if self.task != "translate" and self.original_language:
            params["language"] = self.original_language
        if prompt:
            params["prompt"] = prompt
        proc = self.client.audio.translations if self.task == "translate" else self.client.audio.transcriptions
        transcript = proc.create(**params)
        logger.debug(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds")
        return transcript

    def use_vad(self):
        self.use_vad_opt = True

    def set_translate_task(self):
        self.task = "translate"
    
    def detect_language(self, audio):
        raise NotImplementedError("MLX Whisper does not support language detection.")