Spaces:
Paused
Paused
File size: 14,603 Bytes
72277b5 d3fe52c 72277b5 7db1cf9 eca4b03 7db1cf9 eca4b03 7db1cf9 eca4b03 72277b5 d3fe52c 72277b5 30744bc 9c17134 72277b5 763a8af 72277b5 9c17134 72277b5 7db1cf9 9c17134 eca4b03 7db1cf9 eca4b03 9c17134 eca4b03 9c17134 eca4b03 9c17134 eca4b03 72277b5 d3fe52c 72277b5 eca4b03 72277b5 d3fe52c 72277b5 eca4b03 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 |
import sys
import logging
import io
import soundfile as sf
import math
try:
import torch
except ImportError:
torch = None
from typing import List
import numpy as np
from timed_objects import ASRToken
logger = logging.getLogger(__name__)
class ASRBase:
sep = " " # join transcribe words with this character (" " for whisper_timestamped,
# "" for faster-whisper because it emits the spaces when needed)
def __init__(self, lan, modelsize=None, cache_dir=None, model_dir=None, logfile=sys.stderr):
self.logfile = logfile
self.transcribe_kargs = {}
if lan == "auto":
self.original_language = None
else:
self.original_language = lan
self.model = self.load_model(modelsize, cache_dir, model_dir)
def with_offset(self, offset: float) -> ASRToken:
# This method is kept for compatibility (typically you will use ASRToken.with_offset)
return ASRToken(self.start + offset, self.end + offset, self.text)
def __repr__(self):
return f"ASRToken(start={self.start:.2f}, end={self.end:.2f}, text={self.text!r})"
def load_model(self, modelsize, cache_dir, model_dir):
raise NotImplementedError("must be implemented in the child class")
def transcribe(self, audio, init_prompt=""):
raise NotImplementedError("must be implemented in the child class")
def use_vad(self):
raise NotImplementedError("must be implemented in the child class")
class WhisperTimestampedASR(ASRBase):
"""Uses whisper_timestamped as the backend."""
sep = " "
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
print("Loading whisper_timestamped model")
import whisper
import whisper_timestamped
from whisper_timestamped import transcribe_timestamped
self.transcribe_timestamped = transcribe_timestamped
if model_dir is not None:
logger.debug("ignoring model_dir, not implemented")
return whisper.load_model(modelsize, download_root=cache_dir)
def transcribe(self, audio, init_prompt=""):
result = self.transcribe_timestamped(
self.model,
audio,
language=self.original_language,
initial_prompt=init_prompt,
verbose=None,
condition_on_previous_text=True,
**self.transcribe_kargs,
)
return result
def ts_words(self, r) -> List[ASRToken]:
"""
Converts the whisper_timestamped result to a list of ASRToken objects.
"""
tokens = []
for segment in r["segments"]:
for word in segment["words"]:
token = ASRToken(word["start"], word["end"], word["text"])
tokens.append(token)
return tokens
def segments_end_ts(self, res) -> List[float]:
return [segment["end"] for segment in res["segments"]]
def use_vad(self):
self.transcribe_kargs["vad"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
def detect_language(self, audio_file_path):
import whisper
"""
Detect the language of the audio using Whisper's language detection.
Args:
audio (np.ndarray): Audio data as numpy array
Returns:
tuple: (detected_language, confidence, probabilities)
- detected_language (str): The detected language code
- confidence (float): Confidence score for the detected language
- probabilities (dict): Dictionary of language probabilities
"""
try:
# Pad or trim audio to the correct length
audio = whisper.load_audio(audio_file_path)
audio = whisper.pad_or_trim(audio)
# Create mel spectrogram with correct dimensions
mel = whisper.log_mel_spectrogram(audio, n_mels=128).to(self.model.device)
# Detect language
_, probs = self.model.detect_language(mel)
detected_lang = max(probs, key=probs.get)
confidence = probs[detected_lang]
return detected_lang, confidence, probs
except Exception as e:
logger.error(f"Error in language detection: {e}")
raise
class FasterWhisperASR(ASRBase):
"""Uses faster-whisper as the backend."""
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
print("Loading faster-whisper model")
from faster_whisper import WhisperModel
if model_dir is not None:
logger.debug(f"Loading whisper model from model_dir {model_dir}. "
f"modelsize and cache_dir parameters are not used.")
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = modelsize
else:
raise ValueError("Either modelsize or model_dir must be set")
device = "cuda" if torch and torch.cuda.is_available() else "cpu"
compute_type = "float16" if device == "cuda" else "float32"
print(f"Loading whisper model {model_size_or_path} on {device} with compute type {compute_type}")
model = WhisperModel(
model_size_or_path,
device=device,
compute_type=compute_type,
download_root=cache_dir,
)
return model
def transcribe(self, audio: np.ndarray, init_prompt: str = "") -> list:
segments, info = self.model.transcribe(
audio,
language=None,
initial_prompt=init_prompt,
beam_size=5,
word_timestamps=True,
condition_on_previous_text=True,
**self.transcribe_kargs,
)
return list(segments)
def ts_words(self, segments) -> List[ASRToken]:
tokens = []
for segment in segments:
if segment.no_speech_prob > 0.9:
continue
for word in segment.words:
token = ASRToken(word.start, word.end, word.word, probability=word.probability)
tokens.append(token)
return tokens
def segments_end_ts(self, segments) -> List[float]:
return [segment.end for segment in segments]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
def detect_language(self, audio_file_path):
from faster_whisper.audio import decode_audio
"""
Detect the language of the audio using faster-whisper's language detection.
Args:
audio_file_path: Path to the audio file
Returns:
tuple: (detected_language, confidence, probabilities)
- detected_language (str): The detected language code
- confidence (float): Confidence score for the detected language
- probabilities (dict): Dictionary of language probabilities
"""
try:
audio = decode_audio(audio_file_path, sampling_rate=self.model.feature_extractor.sampling_rate)
# Calculate total number of segments (each segment is 30 seconds)
audio_duration = len(audio) / self.model.feature_extractor.sampling_rate
segments_num = max(1, int(audio_duration / 30)) # At least 1 segment
logger.info(f"Audio duration: {audio_duration:.2f}s, using {segments_num} segments for language detection")
# Use faster-whisper's detect_language method
language, language_probability, all_language_probs = self.model.detect_language(
audio=audio,
vad_filter=False, # Disable VAD for language detection
language_detection_segments=segments_num, # Use all possible segments
language_detection_threshold=0.5 # Default threshold
)
# Convert list of tuples to dictionary for consistent return format
probs = {lang: prob for lang, prob in all_language_probs}
return language, language_probability, probs
except Exception as e:
logger.error(f"Error in language detection: {e}")
raise
class MLXWhisper(ASRBase):
"""
Uses MLX Whisper optimized for Apple Silicon.
"""
sep = ""
def load_model(self, modelsize=None, cache_dir=None, model_dir=None):
print("Loading mlx whisper model")
from mlx_whisper.transcribe import ModelHolder, transcribe
import mlx.core as mx
if model_dir is not None:
logger.debug(f"Loading whisper model from model_dir {model_dir}. modelsize parameter is not used.")
model_size_or_path = model_dir
elif modelsize is not None:
model_size_or_path = self.translate_model_name(modelsize)
logger.debug(f"Loading whisper model {modelsize}. You use mlx whisper, so {model_size_or_path} will be used.")
else:
raise ValueError("Either modelsize or model_dir must be set")
self.model_size_or_path = model_size_or_path
dtype = mx.float16
ModelHolder.get_model(model_size_or_path, dtype)
return transcribe
def translate_model_name(self, model_name):
model_mapping = {
"tiny.en": "mlx-community/whisper-tiny.en-mlx",
"tiny": "mlx-community/whisper-tiny-mlx",
"base.en": "mlx-community/whisper-base.en-mlx",
"base": "mlx-community/whisper-base-mlx",
"small.en": "mlx-community/whisper-small.en-mlx",
"small": "mlx-community/whisper-small-mlx",
"medium.en": "mlx-community/whisper-medium.en-mlx",
"medium": "mlx-community/whisper-medium-mlx",
"large-v1": "mlx-community/whisper-large-v1-mlx",
"large-v2": "mlx-community/whisper-large-v2-mlx",
"large-v3": "mlx-community/whisper-large-v3-mlx",
"large-v3-turbo": "mlx-community/whisper-large-v3-turbo",
"large": "mlx-community/whisper-large-mlx",
}
mlx_model_path = model_mapping.get(model_name)
if mlx_model_path:
return mlx_model_path
else:
raise ValueError(f"Model name '{model_name}' is not recognized or not supported.")
def transcribe(self, audio, init_prompt=""):
if self.transcribe_kargs:
logger.warning("Transcribe kwargs (vad, task) are not compatible with MLX Whisper and will be ignored.")
segments = self.model(
audio,
language=self.original_language,
initial_prompt=init_prompt,
word_timestamps=True,
condition_on_previous_text=True,
path_or_hf_repo=self.model_size_or_path,
)
return segments.get("segments", [])
def ts_words(self, segments) -> List[ASRToken]:
tokens = []
for segment in segments:
if segment.get("no_speech_prob", 0) > 0.9:
continue
for word in segment.get("words", []):
token = ASRToken(word["start"], word["end"], word["word"], probability=word["probability"])
tokens.append(token)
return tokens
def segments_end_ts(self, res) -> List[float]:
return [s["end"] for s in res]
def use_vad(self):
self.transcribe_kargs["vad_filter"] = True
def set_translate_task(self):
self.transcribe_kargs["task"] = "translate"
def detect_language(self, audio):
raise NotImplementedError("MLX Whisper does not support language detection.")
class OpenaiApiASR(ASRBase):
"""Uses OpenAI's Whisper API for transcription."""
def __init__(self, lan=None, temperature=0, logfile=sys.stderr):
print("Loading openai api model")
self.logfile = logfile
self.modelname = "whisper-1"
self.original_language = None if lan == "auto" else lan
self.response_format = "verbose_json"
self.temperature = temperature
self.load_model()
self.use_vad_opt = False
self.task = "transcribe"
def load_model(self, *args, **kwargs):
from openai import OpenAI
self.client = OpenAI()
self.transcribed_seconds = 0
def ts_words(self, segments) -> List[ASRToken]:
"""
Converts OpenAI API response words into ASRToken objects while
optionally skipping words that fall into no-speech segments.
"""
no_speech_segments = []
if self.use_vad_opt:
for segment in segments.segments:
if segment.no_speech_prob > 0.8:
no_speech_segments.append((segment.start, segment.end))
tokens = []
for word in segments.words:
start = word.start
end = word.end
if any(s[0] <= start <= s[1] for s in no_speech_segments):
continue
tokens.append(ASRToken(start, end, word.word))
return tokens
def segments_end_ts(self, res) -> List[float]:
return [s.end for s in res.words]
def transcribe(self, audio_data, prompt=None, *args, **kwargs):
buffer = io.BytesIO()
buffer.name = "temp.wav"
sf.write(buffer, audio_data, samplerate=16000, format="WAV", subtype="PCM_16")
buffer.seek(0)
self.transcribed_seconds += math.ceil(len(audio_data) / 16000)
params = {
"model": self.modelname,
"file": buffer,
"response_format": self.response_format,
"temperature": self.temperature,
"timestamp_granularities": ["word", "segment"],
}
if self.task != "translate" and self.original_language:
params["language"] = self.original_language
if prompt:
params["prompt"] = prompt
proc = self.client.audio.translations if self.task == "translate" else self.client.audio.transcriptions
transcript = proc.create(**params)
logger.debug(f"OpenAI API processed accumulated {self.transcribed_seconds} seconds")
return transcript
def use_vad(self):
self.use_vad_opt = True
def set_translate_task(self):
self.task = "translate"
def detect_language(self, audio):
raise NotImplementedError("MLX Whisper does not support language detection.") |