File size: 4,731 Bytes
f4e3196
 
21011da
f4e3196
21011da
f4e3196
de093bc
167a0c6
 
 
b316f65
167a0c6
 
feca41c
f4e3196
21011da
 
 
 
 
 
 
 
f4e3196
e4f3adb
 
 
 
 
 
 
 
 
167a0c6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4f3adb
167a0c6
06a3097
1380647
21011da
f4e3196
676e2a2
f4e3196
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import httpx
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report

app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

# Declare the continuous function as an async function.
#async def your_continuous_function():
   
            #await asyncio.sleep(60)  # Adjust the sleep interval as needed

# Create a startup event.
#@app.on_event("startup")
#async def startup_event():
    # Start the continuous function as a background task.
    #asyncio.create_task(your_continuous_function())

from joblib import dump

def train_the_model(data):
    data = data
    
    # Select columns
    selected_columns = ['customer_name', 'customer_address', 'customer_phone',
                        'customer_email', 'cod', 'weight',
                        'origin_city.name', 'destination_city.name', 'status.name']
    
    # Handling missing values
    data_filled = data[selected_columns].fillna('Missing')
    
    # Encoding categorical variables
    encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
    for col, encoder in encoders.items():
        data_filled[col] = encoder.fit_transform(data_filled[col])
    
    # Splitting the dataset
    X = data_filled.drop('status.name', axis=1)
    y = data_filled['status.name']
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
    
    # Setup the hyperparameter grid to search
    param_grid = {
        'max_depth': [3, 4, 5],
        'learning_rate': [0.01, 0.1, 0.4],
        'n_estimators': [100, 200, 300],
        'subsample': [0.8, 0.9, 1],
        'colsample_bytree': [0.3, 0.7]
    }
    
    # Initialize the classifier
    xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
    
    # Setup GridSearchCV
    grid_search = GridSearchCV(xgb, param_grid, cv=10, n_jobs=-1, scoring='accuracy')
    
    # Fit the grid search to the data
    grid_search.fit(X_train, y_train)
    
    # Get the best parameters
    best_params = grid_search.best_params_
    print("Best parameters:", best_params)
    
    # Train the model with best parameters
    best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
    best_xgb.fit(X_train, y_train)
    
    # Predict on the test set
    y_pred = best_xgb.predict(X_test)
    y_pred_proba = best_xgb.predict_proba(X_test)
    
    # Evaluate the model
    accuracy = accuracy_score(y_test, y_pred)
    classification_rep = classification_report(y_test, y_pred)
    
    # Print the results
    print("Accuracy:", accuracy)
    print("Classification Report:\n", classification_report(y_test, y_pred))

    
    # Save the model
    model_filename = 'xgb_model.joblib'
    dump(best_xgb, model_filename)
    
    # Save the encoders
    encoders_filename = 'encoders.joblib'
    dump(encoders, encoders_filename)
    
    print(f"Model saved as {model_filename}")
    print(f"Encoders saved as {encoders_filename}")
    
@app.get("/trigger_the_data_fecher_every_30min")
async def your_continuous_function(page: int):
    print("data fetcher running.....")
            
    # Initialize an empty DataFrame to store the combined data
    combined_df = pd.DataFrame()
            
    # Update the payload for each page
    url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=500&page="+str(page)
            
    payload = {}
    headers = {
                    'Accept': 'application/json',
                    'X-Tenant': 'royalexpress'
                  }
            
    response = requests.request("GET", url, headers=headers, data=payload)
            
    # Sample JSON response
    json_response = response.json()
    # Extracting 'data' for conversion
    data = json_response['data']
            
    df = pd.json_normalize(data)
            
    # Concatenate the current page's DataFrame with the combined DataFrame
    combined_df = pd.concat([combined_df, df], ignore_index=True)
            
    data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
    print("data collected from page : "+str(page))
    #data.to_csv("new.csv")
    
    train_the_model(data)

    return "model trained with new page : "+str(page)+" data"

@app.get("/test_api")
async def test_api():
    return "kpi_result"