Spaces:
Sleeping
Sleeping
File size: 4,731 Bytes
f4e3196 21011da f4e3196 21011da f4e3196 de093bc 167a0c6 b316f65 167a0c6 feca41c f4e3196 21011da f4e3196 e4f3adb 167a0c6 e4f3adb 167a0c6 06a3097 1380647 21011da f4e3196 676e2a2 f4e3196 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 |
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import httpx
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
# Declare the continuous function as an async function.
#async def your_continuous_function():
#await asyncio.sleep(60) # Adjust the sleep interval as needed
# Create a startup event.
#@app.on_event("startup")
#async def startup_event():
# Start the continuous function as a background task.
#asyncio.create_task(your_continuous_function())
from joblib import dump
def train_the_model(data):
data = data
# Select columns
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
'customer_email', 'cod', 'weight',
'origin_city.name', 'destination_city.name', 'status.name']
# Handling missing values
data_filled = data[selected_columns].fillna('Missing')
# Encoding categorical variables
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
for col, encoder in encoders.items():
data_filled[col] = encoder.fit_transform(data_filled[col])
# Splitting the dataset
X = data_filled.drop('status.name', axis=1)
y = data_filled['status.name']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Setup the hyperparameter grid to search
param_grid = {
'max_depth': [3, 4, 5],
'learning_rate': [0.01, 0.1, 0.4],
'n_estimators': [100, 200, 300],
'subsample': [0.8, 0.9, 1],
'colsample_bytree': [0.3, 0.7]
}
# Initialize the classifier
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
# Setup GridSearchCV
grid_search = GridSearchCV(xgb, param_grid, cv=10, n_jobs=-1, scoring='accuracy')
# Fit the grid search to the data
grid_search.fit(X_train, y_train)
# Get the best parameters
best_params = grid_search.best_params_
print("Best parameters:", best_params)
# Train the model with best parameters
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
best_xgb.fit(X_train, y_train)
# Predict on the test set
y_pred = best_xgb.predict(X_test)
y_pred_proba = best_xgb.predict_proba(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
# Print the results
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
# Save the model
model_filename = 'xgb_model.joblib'
dump(best_xgb, model_filename)
# Save the encoders
encoders_filename = 'encoders.joblib'
dump(encoders, encoders_filename)
print(f"Model saved as {model_filename}")
print(f"Encoders saved as {encoders_filename}")
@app.get("/trigger_the_data_fecher_every_30min")
async def your_continuous_function(page: int):
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
# Update the payload for each page
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate=500&page="+str(page)
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': 'royalexpress'
}
response = requests.request("GET", url, headers=headers, data=payload)
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response['data']
df = pd.json_normalize(data)
# Concatenate the current page's DataFrame with the combined DataFrame
combined_df = pd.concat([combined_df, df], ignore_index=True)
data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
print("data collected from page : "+str(page))
#data.to_csv("new.csv")
train_the_model(data)
return "model trained with new page : "+str(page)+" data"
@app.get("/test_api")
async def test_api():
return "kpi_result" |