File size: 6,573 Bytes
f4e3196
 
21011da
f4e3196
21011da
f4e3196
de093bc
167a0c6
 
 
b316f65
167a0c6
7fd1a2d
094893c
 
167a0c6
feca41c
f4e3196
21011da
 
 
 
 
 
 
 
e4f3adb
167a0c6
16b3fd2
 
d7263a4
 
 
 
 
 
 
 
1fbf289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16b3fd2
 
1fbf289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2461ef1
1fbf289
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
167a0c6
 
 
 
 
 
1fbf289
167a0c6
 
 
 
1fbf289
167a0c6
 
 
 
 
 
 
 
1fbf289
 
167a0c6
1fbf289
167a0c6
 
 
 
 
 
 
e4f3adb
16b3fd2
06a3097
1fbf289
21011da
f4e3196
676e2a2
2461ef1
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import httpx
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report
from joblib import dump, load
import numpy as np


app = FastAPI()

app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)



def train_the_model(data,page):
    if page==2:
# Function to evaluate the model
        def evaluate_model(model, X_test, y_test):
            y_pred = model.predict(X_test)
            accuracy = accuracy_score(y_test, y_pred)
            print("Accuracy:", accuracy)
            print("Classification Report:\n", classification_report(y_test, y_pred))
            return accuracy
            
        new_data = data
        encoders = load('encoders.joblib')
        xgb_model = load('xgb_model.joblib')
        selected_columns = ['customer_name', 'customer_address', 'customer_phone',
                            'customer_email', 'cod', 'weight', 'origin_city.name',
                            'destination_city.name', 'status.name']
        new_data_filled = new_data[selected_columns].fillna('Missing')
        for col, encoder in encoders.items():
            if col in new_data_filled.columns:
                unseen_categories = set(new_data_filled[col]) - set(encoder.classes_)
                if unseen_categories:
                    for category in unseen_categories:
                        encoder.classes_ = np.append(encoder.classes_, category)
                    new_data_filled[col] = encoder.transform(new_data_filled[col])
                else:
                    new_data_filled[col] = encoder.transform(new_data_filled[col])
        X_new = new_data_filled.drop('status.name', axis=1)
        y_new = new_data_filled['status.name']
        xgb_model.fit(X_new, y_new)
        dump(xgb_model, 'xgb_model.joblib')
        print("Model updated with new data.")
        updated_model_accuracy = evaluate_model(xgb_model, X_test, y_test)
        print("Updated model accuracy:", updated_model_accuracy)
        
    else:
        data = data
        
        # Select columns
        selected_columns = ['customer_name', 'customer_address', 'customer_phone',
                            'customer_email', 'cod', 'weight',
                            'origin_city.name', 'destination_city.name', 'status.name']
        
        # Handling missing values
        data_filled = data[selected_columns].fillna('Missing')
        
        # Encoding categorical variables
        encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
        for col, encoder in encoders.items():
            data_filled[col] = encoder.fit_transform(data_filled[col])
        
        # Splitting the dataset
        X = data_filled.drop('status.name', axis=1)
        y = data_filled['status.name']
        X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
        
        # Setup the hyperparameter grid to search
        param_grid = {
            'max_depth': [3, 4, 5],
            'learning_rate': [0.01, 0.1, 0.4],
            'n_estimators': [100, 200, 300],
            'subsample': [0.8, 0.9, 1],
            'colsample_bytree': [0.3, 0.7]
        }
        
        # Initialize the classifier
        xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
        
        # Setup GridSearchCV
        grid_search = GridSearchCV(xgb, param_grid, cv=2, n_jobs=-1, scoring='accuracy')
        
        # Fit the grid search to the data
        grid_search.fit(X_train, y_train)
        
        # Get the best parameters
        best_params = grid_search.best_params_
        print("Best parameters:", best_params)
        
        # Train the model with best parameters
        best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
        best_xgb.fit(X_train, y_train)
        
        # Predict on the test set
        y_pred = best_xgb.predict(X_test)
        y_pred_proba = best_xgb.predict_proba(X_test)
        
        # Evaluate the model
        accuracy = accuracy_score(y_test, y_pred)
        classification_rep = classification_report(y_test, y_pred)
        
        # Print the results
        print("Accuracy:", accuracy)
        print("Classification Report:\n", classification_report(y_test, y_pred))
    
        
        # Save the model
        model_filename = 'xgb_model.joblib'
        dump(best_xgb, model_filename)
        
        # Save the encoders
        encoders_filename = 'encoders.joblib'
        dump(encoders, encoders_filename)
        
        print(f"Model saved as {model_filename}")
        print(f"Encoders saved as {encoders_filename}")
        print("new base model trained")
    
@app.get("/trigger_the_data_fecher")
async def your_continuous_function(page: int,paginate: int,Tenant: str):
    print("data fetcher running.....")
            
    # Initialize an empty DataFrame to store the combined data
    combined_df = pd.DataFrame()
            
    # Update the payload for each page
    url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate="+str(paginate)+"&page="+str(page)
            
    payload = {}
    headers = {
                    'Accept': 'application/json',
                    'X-Tenant': Tenant #'royalexpress'
                  }
            
    response = requests.request("GET", url, headers=headers, data=payload)
            
    # Sample JSON response
    json_response = response.json()
    # Extracting 'data' for conversion
    data = json_response['data']
    data_count = len(data)  
    
    df = pd.json_normalize(data)
    
            
    # Concatenate the current page's DataFrame with the combined DataFrame
    combined_df = pd.concat([combined_df, df], ignore_index=True)
            
    data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
    print("data collected from page : "+str(page))
    #data.to_csv("new.csv")
    
    train_the_model(data,page)

    return "model trained with page number: "+str(page)+" data count :"+str(data_count)

@app.get("/test_api")
async def test_api():
    encoders = load('encoders.joblib')
    xgb_model = load('xgb_model.joblib')