Arafath10's picture
Update main.py
d7263a4 verified
raw
history blame
6.57 kB
import asyncio
from fastapi import FastAPI
from fastapi.middleware.cors import CORSMiddleware
import requests
import pandas as pd
import json
import httpx
import pandas as pd
from sklearn.model_selection import train_test_split, GridSearchCV
from sklearn.preprocessing import LabelEncoder
from xgboost import XGBClassifier
from sklearn.metrics import accuracy_score, classification_report
from joblib import dump, load
import numpy as np
app = FastAPI()
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
def train_the_model(data,page):
if page==2:
# Function to evaluate the model
def evaluate_model(model, X_test, y_test):
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
return accuracy
new_data = data
encoders = load('encoders.joblib')
xgb_model = load('xgb_model.joblib')
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
'customer_email', 'cod', 'weight', 'origin_city.name',
'destination_city.name', 'status.name']
new_data_filled = new_data[selected_columns].fillna('Missing')
for col, encoder in encoders.items():
if col in new_data_filled.columns:
unseen_categories = set(new_data_filled[col]) - set(encoder.classes_)
if unseen_categories:
for category in unseen_categories:
encoder.classes_ = np.append(encoder.classes_, category)
new_data_filled[col] = encoder.transform(new_data_filled[col])
else:
new_data_filled[col] = encoder.transform(new_data_filled[col])
X_new = new_data_filled.drop('status.name', axis=1)
y_new = new_data_filled['status.name']
xgb_model.fit(X_new, y_new)
dump(xgb_model, 'xgb_model.joblib')
print("Model updated with new data.")
updated_model_accuracy = evaluate_model(xgb_model, X_test, y_test)
print("Updated model accuracy:", updated_model_accuracy)
else:
data = data
# Select columns
selected_columns = ['customer_name', 'customer_address', 'customer_phone',
'customer_email', 'cod', 'weight',
'origin_city.name', 'destination_city.name', 'status.name']
# Handling missing values
data_filled = data[selected_columns].fillna('Missing')
# Encoding categorical variables
encoders = {col: LabelEncoder() for col in selected_columns if data_filled[col].dtype == 'object'}
for col, encoder in encoders.items():
data_filled[col] = encoder.fit_transform(data_filled[col])
# Splitting the dataset
X = data_filled.drop('status.name', axis=1)
y = data_filled['status.name']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# Setup the hyperparameter grid to search
param_grid = {
'max_depth': [3, 4, 5],
'learning_rate': [0.01, 0.1, 0.4],
'n_estimators': [100, 200, 300],
'subsample': [0.8, 0.9, 1],
'colsample_bytree': [0.3, 0.7]
}
# Initialize the classifier
xgb = XGBClassifier(use_label_encoder=False, eval_metric='logloss')
# Setup GridSearchCV
grid_search = GridSearchCV(xgb, param_grid, cv=2, n_jobs=-1, scoring='accuracy')
# Fit the grid search to the data
grid_search.fit(X_train, y_train)
# Get the best parameters
best_params = grid_search.best_params_
print("Best parameters:", best_params)
# Train the model with best parameters
best_xgb = XGBClassifier(**best_params, use_label_encoder=False, eval_metric='logloss')
best_xgb.fit(X_train, y_train)
# Predict on the test set
y_pred = best_xgb.predict(X_test)
y_pred_proba = best_xgb.predict_proba(X_test)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
classification_rep = classification_report(y_test, y_pred)
# Print the results
print("Accuracy:", accuracy)
print("Classification Report:\n", classification_report(y_test, y_pred))
# Save the model
model_filename = 'xgb_model.joblib'
dump(best_xgb, model_filename)
# Save the encoders
encoders_filename = 'encoders.joblib'
dump(encoders, encoders_filename)
print(f"Model saved as {model_filename}")
print(f"Encoders saved as {encoders_filename}")
print("new base model trained")
@app.get("/trigger_the_data_fecher")
async def your_continuous_function(page: int,paginate: int,Tenant: str):
print("data fetcher running.....")
# Initialize an empty DataFrame to store the combined data
combined_df = pd.DataFrame()
# Update the payload for each page
url = "https://dev3.api.curfox.parallaxtec.com/api/ml/order-list?sort=id&paginate="+str(paginate)+"&page="+str(page)
payload = {}
headers = {
'Accept': 'application/json',
'X-Tenant': Tenant #'royalexpress'
}
response = requests.request("GET", url, headers=headers, data=payload)
# Sample JSON response
json_response = response.json()
# Extracting 'data' for conversion
data = json_response['data']
data_count = len(data)
df = pd.json_normalize(data)
# Concatenate the current page's DataFrame with the combined DataFrame
combined_df = pd.concat([combined_df, df], ignore_index=True)
data = combined_df[combined_df['status.name'].isin(['RETURN TO CLIENT', 'DELIVERED'])]
print("data collected from page : "+str(page))
#data.to_csv("new.csv")
train_the_model(data,page)
return "model trained with page number: "+str(page)+" data count :"+str(data_count)
@app.get("/test_api")
async def test_api():
encoders = load('encoders.joblib')
xgb_model = load('xgb_model.joblib')