Spaces:
Sleeping
Sleeping
File size: 1,560 Bytes
6202397 842a9ce 6202397 a70ae15 dd6ec5a 842a9ce 6202397 ae981e1 6202397 842a9ce 6202397 dd6ec5a 6202397 dd6ec5a 6202397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
import streamlit as st
from transformers import MarianMTModel, MarianTokenizer
# Load the MarianMT model and tokenizer
model_name = "Helsinki-NLP/opus-mt-en-ROMANCE"
model = MarianMTModel.from_pretrained(model_name)
tokenizer = MarianTokenizer.from_pretrained(model_name)
# Define target language codes directly
language_codes = {
'French': 'fr',
'German': 'de',
'Italian': 'it',
'Portuguese': 'pt',
'Spanish': 'es',
# Add more languages if needed
}
def translate_text(text, target_lang_code):
# Prepare the input and translate
inputs = tokenizer.encode(text, return_tensors="pt")
# Generate the translation
translated = model.generate(inputs, decoder_start_token_id=tokenizer.get_lang_id(target_lang_code))
translated_text = tokenizer.decode(translated[0], skip_special_tokens=True)
return translated_text
def main():
st.title("English to Any Language Translator")
# User input for English text
text_to_translate = st.text_area("Enter text in English:")
# Language options
selected_language = st.selectbox("Select target language:", list(language_codes.keys()))
if st.button("Translate"):
if text_to_translate:
target_lang_code = language_codes[selected_language]
translated_text = translate_text(text_to_translate, target_lang_code)
st.write(f"**Translation in {selected_language}:**")
st.write(translated_text)
else:
st.warning("Please enter text to translate.")
if __name__ == "__main__":
main()
|