File size: 12,594 Bytes
af10606
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
### IMPORTS
import tensorflow as tf
import numpy as np

import einops
import numpy as np
import tqdm

import collections
import re
import string
import pickle

print("import complete")
#=========================================================================================================================
### UTILITY FUNCTIONS
#=========================================================================================================================

IMAGE_SHAPE=(224, 224, 3)

@tf.keras.utils.register_keras_serializable()
def custom_standardization(s):
    s = tf.strings.lower(s)
    s = tf.strings.regex_replace(s, f'[{re.escape(string.punctuation)}]', '')
    s = tf.strings.join(['[START]', s, '[END]'], separator=' ')
    return s

def load_image(image_path):
    img = tf.io.read_file(image_path)
    img = tf.io.decode_jpeg(img, channels=3)
    img = tf.image.resize(img, IMAGE_SHAPE[:-1])
    return img

def load_image_obj(img):
    img = tf.image.resize(img, IMAGE_SHAPE[:-1])
    return img

def masked_loss(labels, preds):  
    loss = tf.nn.sparse_softmax_cross_entropy_with_logits(labels, preds)

    mask = (labels != 0) & (loss < 1e8) 
    mask = tf.cast(mask, loss.dtype)

    loss = loss*mask
    loss = tf.reduce_sum(loss)/tf.reduce_sum(mask)
    return loss

def masked_acc(labels, preds):
    mask = tf.cast(labels!=0, tf.float32)
    preds = tf.argmax(preds, axis=-1)
    labels = tf.cast(labels, tf.int64)
    match = tf.cast(preds == labels, mask.dtype)
    acc = tf.reduce_sum(match*mask)/tf.reduce_sum(mask)
    return acc

print("utility complete")
#=========================================================================================================================
###                                                  MODEL CLASS
#=========================================================================================================================

mobilenet = tf.keras.applications.MobileNetV3Small(
    input_shape=IMAGE_SHAPE,
    include_top=False,
    include_preprocessing=True)
mobilenet.trainable=False

class SeqEmbedding(tf.keras.layers.Layer):
    def __init__(self, vocab_size, max_length, depth):
        super().__init__()
        self.pos_embedding = tf.keras.layers.Embedding(input_dim=max_length, output_dim=depth)

        self.token_embedding = tf.keras.layers.Embedding(
            input_dim=vocab_size,
            output_dim=depth,
            mask_zero=True)

        self.add = tf.keras.layers.Add()

        
    def call(self, seq):
        seq = self.token_embedding(seq) # (batch, seq, depth)
        
        x = tf.range(tf.shape(seq)[1])  # (seq)
        x = x[tf.newaxis, :]  # (1, seq)
        x = self.pos_embedding(x)  # (1, seq, depth)

        return self.add([seq,x])
    
class CausalSelfAttention(tf.keras.layers.Layer):
    def __init__(self, **kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
        # Use Add instead of + so the keras mask propagates through.
        self.add = tf.keras.layers.Add() 
        self.layernorm = tf.keras.layers.LayerNormalization()

        
    def call(self, x):
        attn = self.mha(query=x, value=x,
                        use_causal_mask=True)
        x = self.add([x, attn])
        return self.layernorm(x)

class CrossAttention(tf.keras.layers.Layer):
    def __init__(self,**kwargs):
        super().__init__()
        self.mha = tf.keras.layers.MultiHeadAttention(**kwargs)
        self.add = tf.keras.layers.Add() 
        self.layernorm = tf.keras.layers.LayerNormalization()

    def call(self, x, y, **kwargs):
        attn, attention_scores = self.mha(
                 query=x, value=y,
                 return_attention_scores=True)

        self.last_attention_scores = attention_scores

        x = self.add([x, attn])
        return self.layernorm(x)
    
class FeedForward(tf.keras.layers.Layer):
    def __init__(self, units, dropout_rate=0.1):
        super().__init__()
        self.seq = tf.keras.Sequential([
            tf.keras.layers.Dense(units=2*units, activation='relu'),
            tf.keras.layers.Dense(units=units),
            tf.keras.layers.Dropout(rate=dropout_rate),
        ])

        self.layernorm = tf.keras.layers.LayerNormalization()

    def call(self, x):
        x = x + self.seq(x)
        return self.layernorm(x)
    
class DecoderLayer(tf.keras.layers.Layer):
    def __init__(self, units, num_heads=1, dropout_rate=0.1):
        super().__init__()

        self.self_attention = CausalSelfAttention(num_heads=num_heads,
                                                  key_dim=units,
                                                  dropout=dropout_rate)
        self.cross_attention = CrossAttention(num_heads=num_heads,
                                              key_dim=units,
                                              dropout=dropout_rate)
        self.ff = FeedForward(units=units, dropout_rate=dropout_rate)


    def call(self, inputs, training=False):
        in_seq, out_seq = inputs

        # Text input
        out_seq = self.self_attention(out_seq)

        out_seq = self.cross_attention(out_seq, in_seq)

        self.last_attention_scores = self.cross_attention.last_attention_scores

        out_seq = self.ff(out_seq)

        return out_seq
  
class TokenOutput(tf.keras.layers.Layer):
    def __init__(self, tokenizer, banned_tokens=('', '[UNK]', '[START]'), bias=None, **kwargs):
        super().__init__()

        self.dense = tf.keras.layers.Dense(
            units=tokenizer.vocabulary_size(), **kwargs)
        self.tokenizer = tokenizer
        self.banned_tokens = banned_tokens

        self.bias = bias

    def adapt(self, ds):
        counts = collections.Counter()
        vocab_dict = {name: id 
                      for id, name in enumerate(self.tokenizer.get_vocabulary())}

        for tokens in tqdm.tqdm(ds):
            counts.update(tokens.numpy().flatten())

        counts_arr = np.zeros(shape=(self.tokenizer.vocabulary_size(),))
        counts_arr[np.array(list(counts.keys()), dtype=np.int32)] = list(counts.values())

        counts_arr = counts_arr[:]
        for token in self.banned_tokens:
            counts_arr[vocab_dict[token]] = 0

        total = counts_arr.sum()
        p = counts_arr/total
        p[counts_arr==0] = 1.0
        log_p = np.log(p)  # log(1) == 0

        entropy = -(log_p*p).sum()

        print()
        print(f"Uniform entropy: {np.log(self.tokenizer.vocabulary_size()):0.2f}")
        print(f"Marginal entropy: {entropy:0.2f}")

        self.bias = log_p
        self.bias[counts_arr==0] = -1e9

    def call(self, x):
        x = self.dense(x)
        return x + self.bias
    
    def get_config(self):
        config = super(TokenOutput, self).get_config()
        config.update({
            "tokenizer": self.tokenizer,
            "banned_tokens": self.banned_tokens,
            "bias": self.bias,
            "dense":self.dense
        })
        
        return config
    
class Captioner(tf.keras.Model):
    @classmethod
    def add_method(cls, fun):
        setattr(cls, fun.__name__, fun)
        return fun

    def __init__(self, tokenizer, feature_extractor, output_layer, num_layers=1,
                   units=256, max_length=50, num_heads=1, dropout_rate=0.1):
        super().__init__()
        self.feature_extractor = feature_extractor
        self.tokenizer = tokenizer
        self.word_to_index = tf.keras.layers.StringLookup(
            mask_token="",
            vocabulary=tokenizer.get_vocabulary())
        self.index_to_word = tf.keras.layers.StringLookup(
            mask_token="",
            vocabulary=tokenizer.get_vocabulary(),
            invert=True) 

        self.seq_embedding = SeqEmbedding(
            vocab_size=tokenizer.vocabulary_size(),
            depth=units,
            max_length=max_length)

        self.decoder_layers = [
            DecoderLayer(units, num_heads=num_heads, dropout_rate=dropout_rate)
            for n in range(num_layers)]

        self.output_layer = output_layer

    def call(self, inputs):
        image, txt = inputs

        if image.shape[-1] == 3:    
            # Apply the feature-extractor, if you get an RGB image.
            image = self.feature_extractor(image)
        
        # Flatten the feature map
        image = einops.rearrange(image, 'b h w c -> b (h w) c')


        if txt.dtype == tf.string:
            # Apply the tokenizer if you get string inputs.
            txt = self.tokenizer(txt)

        txt = self.seq_embedding(txt)

        # Look at the image
        for dec_layer in self.decoder_layers:
            txt = dec_layer(inputs=(image, txt))
        
        txt = self.output_layer(txt)

        return txt


    def simple_gen(self, image, temperature=1):
        initial = self.word_to_index([['[START]']]) # (batch, sequence)
        img_features = self.feature_extractor(image[tf.newaxis, ...])

        tokens = initial # (batch, sequence)
        for n in range(50):
            preds = self((img_features, tokens)).numpy()  # (batch, sequence, vocab)
            preds = preds[:,-1, :]  #(batch, vocab)
            if temperature==0:
                next = tf.argmax(preds, axis=-1)[:, tf.newaxis]  # (batch, 1)
            else:
                next = tf.random.categorical(preds/temperature, num_samples=1)  # (batch, 1)
            tokens = tf.concat([tokens, next], axis=1) # (batch, sequence) 

            if next[0] == self.word_to_index('[END]'):
                break
                
        words = self.index_to_word(tokens[0, 1:-1])
        result = tf.strings.reduce_join(words, axis=-1, separator=' ')
        return result.numpy().decode()
    
    # def get_config(self):
    #     config = super().get_config()
    #     config.update({"feature_extractor": self.feature_extractor,
    #                    "tokenizer": self.tokenizer,
    #                    "word_to_index": self.word_to_index,
    #                    "index_to_word": self.index_to_word,
    #                    "outputlayer": self.output_layer,
    #                    "seq_embedding": self.seq_embedding,
    #                    "decoder_layers": self.decoder_layers
    #                    })
    #     return config
    
    # def build_from_config(self, config):
    #     return super().build_from_config(config)

# model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
#            loss=masked_loss,
#            metrics=[masked_acc])

print("model complete")
#=========================================================================================================================
### LOAD FUNCTION
#=========================================================================================================================

def build():
    filename = "model/tokenizer.pkl"
    token_meta = pickle.load(open(filename, 'rb'))
    tokenizer = tf.keras.layers.TextVectorization.from_config(token_meta["config"])
    tokenizer.set_weights(token_meta['weights'])
    print(tokenizer("bulid sentence"))
    word_to_index = tf.keras.layers.StringLookup(
        mask_token="",
        vocabulary=tokenizer.get_vocabulary())

    index_to_word = tf.keras.layers.StringLookup(
        mask_token="",
        vocabulary=tokenizer.get_vocabulary(),
        invert=True)

    output_layer = TokenOutput(tokenizer, banned_tokens=('', '[UNK]', '[START]'))
    filename = "model/output_layer.pkl"
    bias = pickle.load(open(filename, 'rb'))
    output_layer.bias = bias
    
    load_model = Captioner(tokenizer, feature_extractor=mobilenet, output_layer=output_layer,
                  units=256, dropout_rate=0.5, num_layers=2, num_heads=2)
    load_model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
           loss=masked_loss,
           metrics=[masked_acc])
    
    image_url = 'https://tensorflow.org/images/surf.jpg'
    image_path = tf.keras.utils.get_file('surf.jpg', origin=image_url)
    image = load_image(image_path)
    load_model.simple_gen(image)
    
    path = "model/captioner_weights"
    load_model.load_weights(path)
    return load_model

# loaded_model = build()
print("loaded")
#=========================================================================================================================
### TEST RUN
#=========================================================================================================================

image_url = 'https://tensorflow.org/images/surf.jpg'
image_path = tf.keras.utils.get_file('surf.jpg', origin=image_url)
image = load_image(image_path)