anyantudre's picture
moved from training repo to inference
caa56d6
raw
history blame
27.4 kB
# author: Zhiyuan Yan
# email: [email protected]
# date: 2023-03-30
# description: Abstract Base Class for all types of deepfake datasets.
import sys
import lmdb
sys.path.append('.')
import os
import math
import yaml
import glob
import json
import numpy as np
from copy import deepcopy
import cv2
import random
from PIL import Image
from collections import defaultdict
import torch
from torch.autograd import Variable
from torch.utils import data
from torchvision import transforms as T
import albumentations as A
from .albu import IsotropicResize
FFpp_pool=['FaceForensics++','FaceShifter','DeepFakeDetection','FF-DF','FF-F2F','FF-FS','FF-NT']#
def all_in_pool(inputs,pool):
for each in inputs:
if each not in pool:
return False
return True
class DeepfakeAbstractBaseDataset(data.Dataset):
"""
Abstract base class for all deepfake datasets.
"""
def __init__(self, config=None, mode='train'):
"""Initializes the dataset object.
Args:
config (dict): A dictionary containing configuration parameters.
mode (str): A string indicating the mode (train or test).
Raises:
NotImplementedError: If mode is not train or test.
"""
# Set the configuration and mode
self.config = config
self.mode = mode
self.compression = config['compression']
self.frame_num = config['frame_num'][mode]
# Check if 'video_mode' exists in config, otherwise set video_level to False
self.video_level = config.get('video_mode', False)
self.clip_size = config.get('clip_size', None)
self.lmdb = config.get('lmdb', False)
# Dataset dictionary
self.image_list = []
self.label_list = []
# Set the dataset dictionary based on the mode
if mode == 'train':
dataset_list = config['train_dataset']
# Training data should be collected together for training
image_list, label_list = [], []
for one_data in dataset_list:
tmp_image, tmp_label, tmp_name = self.collect_img_and_label_for_one_dataset(one_data)
image_list.extend(tmp_image)
label_list.extend(tmp_label)
if self.lmdb:
if len(dataset_list)>1:
if all_in_pool(dataset_list,FFpp_pool):
lmdb_path = os.path.join(config['lmdb_dir'], f"FaceForensics++_lmdb")
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
else:
raise ValueError('Training with multiple dataset and lmdb is not implemented yet.')
else:
lmdb_path = os.path.join(config['lmdb_dir'], f"{dataset_list[0] if dataset_list[0] not in FFpp_pool else 'FaceForensics++'}_lmdb")
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
elif mode == 'test':
one_data = config['test_dataset']
# Test dataset should be evaluated separately. So collect only one dataset each time
image_list, label_list, name_list = self.collect_img_and_label_for_one_dataset(one_data)
if self.lmdb:
lmdb_path = os.path.join(config['lmdb_dir'], f"{one_data}_lmdb" if one_data not in FFpp_pool else 'FaceForensics++_lmdb')
self.env = lmdb.open(lmdb_path, create=False, subdir=True, readonly=True, lock=False)
else:
raise NotImplementedError('Only train and test modes are supported.')
assert len(image_list)!=0 and len(label_list)!=0, f"Collect nothing for {mode} mode!"
self.image_list, self.label_list = image_list, label_list
# Create a dictionary containing the image and label lists
self.data_dict = {
'image': self.image_list,
'label': self.label_list,
}
self.transform = self.init_data_aug_method()
def init_data_aug_method(self):
trans = A.Compose([
A.HorizontalFlip(p=self.config['data_aug']['flip_prob']),
A.Rotate(limit=self.config['data_aug']['rotate_limit'], p=self.config['data_aug']['rotate_prob']),
A.GaussianBlur(blur_limit=self.config['data_aug']['blur_limit'], p=self.config['data_aug']['blur_prob']),
A.OneOf([
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_CUBIC),
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_AREA, interpolation_up=cv2.INTER_LINEAR),
IsotropicResize(max_side=self.config['resolution'], interpolation_down=cv2.INTER_LINEAR, interpolation_up=cv2.INTER_LINEAR),
], p = 0 if self.config['with_landmark'] else 1),
A.OneOf([
A.RandomBrightnessContrast(brightness_limit=self.config['data_aug']['brightness_limit'], contrast_limit=self.config['data_aug']['contrast_limit']),
A.FancyPCA(),
A.HueSaturationValue()
], p=0.5),
A.ImageCompression(quality_lower=self.config['data_aug']['quality_lower'], quality_upper=self.config['data_aug']['quality_upper'], p=0.5)
],
keypoint_params=A.KeypointParams(format='xy') if self.config['with_landmark'] else None
)
return trans
def rescale_landmarks(self, landmarks, original_size=256, new_size=224):
scale_factor = new_size / original_size
rescaled_landmarks = landmarks * scale_factor
return rescaled_landmarks
def collect_img_and_label_for_one_dataset(self, dataset_name: str):
"""Collects image and label lists.
Args:
dataset_name (str): A list containing one dataset information. e.g., 'FF-F2F'
Returns:
list: A list of image paths.
list: A list of labels.
Raises:
ValueError: If image paths or labels are not found.
NotImplementedError: If the dataset is not implemented yet.
"""
# Initialize the label and frame path lists
label_list = []
frame_path_list = []
# Record video name for video-level metrics
video_name_list = []
# Try to get the dataset information from the JSON file
if not os.path.exists(self.config['dataset_json_folder']):
self.config['dataset_json_folder'] = self.config['dataset_json_folder'].replace('/Youtu_Pangu_Security_Public', '/Youtu_Pangu_Security/public')
try:
with open(os.path.join(self.config['dataset_json_folder'], dataset_name + '.json'), 'r') as f:
dataset_info = json.load(f)
except Exception as e:
print(e)
raise ValueError(f'dataset {dataset_name} not exist!')
# If JSON file exists, do the following data collection
# FIXME: ugly, need to be modified here.
cp = None
if dataset_name == 'FaceForensics++_c40':
dataset_name = 'FaceForensics++'
cp = 'c40'
elif dataset_name == 'FF-DF_c40':
dataset_name = 'FF-DF'
cp = 'c40'
elif dataset_name == 'FF-F2F_c40':
dataset_name = 'FF-F2F'
cp = 'c40'
elif dataset_name == 'FF-FS_c40':
dataset_name = 'FF-FS'
cp = 'c40'
elif dataset_name == 'FF-NT_c40':
dataset_name = 'FF-NT'
cp = 'c40'
# Get the information for the current dataset
for label in dataset_info[dataset_name]:
sub_dataset_info = dataset_info[dataset_name][label][self.mode]
# Special case for FaceForensics++ and DeepFakeDetection, choose the compression type
if cp == None and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
sub_dataset_info = sub_dataset_info[self.compression]
elif cp == 'c40' and dataset_name in ['FF-DF', 'FF-F2F', 'FF-FS', 'FF-NT', 'FaceForensics++','DeepFakeDetection','FaceShifter']:
sub_dataset_info = sub_dataset_info['c40']
# Iterate over the videos in the dataset
for video_name, video_info in sub_dataset_info.items():
# Unique video name
unique_video_name = video_info['label'] + '_' + video_name
# Get the label and frame paths for the current video
if video_info['label'] not in self.config['label_dict']:
raise ValueError(f'Label {video_info["label"]} is not found in the configuration file.')
label = self.config['label_dict'][video_info['label']]
frame_paths = video_info['frames']
# sorted video path to the lists
if '\\' in frame_paths[0]:
frame_paths = sorted(frame_paths, key=lambda x: int(x.split('\\')[-1].split('.')[0]))
else:
frame_paths = sorted(frame_paths, key=lambda x: int(x.split('/')[-1].split('.')[0]))
# Consider the case when the actual number of frames (e.g., 270) is larger than the specified (i.e., self.frame_num=32)
# In this case, we select self.frame_num frames from the original 270 frames
total_frames = len(frame_paths)
if self.frame_num < total_frames:
total_frames = self.frame_num
if self.video_level:
# Select clip_size continuous frames
start_frame = random.randint(0, total_frames - self.frame_num) if self.mode == 'train' else 0
frame_paths = frame_paths[start_frame:start_frame + self.frame_num] # update total_frames
else:
# Select self.frame_num frames evenly distributed throughout the video
step = total_frames // self.frame_num
frame_paths = [frame_paths[i] for i in range(0, total_frames, step)][:self.frame_num]
# If video-level methods, crop clips from the selected frames if needed
if self.video_level:
if self.clip_size is None:
raise ValueError('clip_size must be specified when video_level is True.')
# Check if the number of total frames is greater than or equal to clip_size
if total_frames >= self.clip_size:
# Initialize an empty list to store the selected continuous frames
selected_clips = []
# Calculate the number of clips to select
num_clips = total_frames // self.clip_size
if num_clips > 1:
# Calculate the step size between each clip
clip_step = (total_frames - self.clip_size) // (num_clips - 1)
# Select clip_size continuous frames from each part of the video
for i in range(num_clips):
# Ensure start_frame + self.clip_size - 1 does not exceed the index of the last frame
start_frame = random.randrange(i * clip_step, min((i + 1) * clip_step, total_frames - self.clip_size + 1)) if self.mode == 'train' else i * clip_step
continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
assert len(continuous_frames) == self.clip_size, 'clip_size is not equal to the length of frame_path_list'
selected_clips.append(continuous_frames)
else:
start_frame = random.randrange(0, total_frames - self.clip_size + 1) if self.mode == 'train' else 0
continuous_frames = frame_paths[start_frame:start_frame + self.clip_size]
assert len(continuous_frames)==self.clip_size, 'clip_size is not equal to the length of frame_path_list'
selected_clips.append(continuous_frames)
# Append the list of selected clips and append the label
label_list.extend([label] * len(selected_clips))
frame_path_list.extend(selected_clips)
# video name save
video_name_list.extend([unique_video_name] * len(selected_clips))
else:
print(f"Skipping video {unique_video_name} because it has less than clip_size ({self.clip_size}) frames ({total_frames}).")
# Otherwise, extend the label and frame paths to the lists according to the number of frames
else:
# Extend the label and frame paths to the lists according to the number of frames
label_list.extend([label] * total_frames)
frame_path_list.extend(frame_paths)
# video name save
video_name_list.extend([unique_video_name] * len(frame_paths))
# Shuffle the label and frame path lists in the same order
shuffled = list(zip(label_list, frame_path_list, video_name_list))
random.shuffle(shuffled)
label_list, frame_path_list, video_name_list = zip(*shuffled)
return frame_path_list, label_list, video_name_list
def load_rgb(self, file_path):
"""
Load an RGB image from a file path and resize it to a specified resolution.
Args:
file_path: A string indicating the path to the image file.
Returns:
An Image object containing the loaded and resized image.
Raises:
ValueError: If the loaded image is None.
"""
size = self.config['resolution'] # if self.mode == "train" else self.config['resolution']
if not self.lmdb:
if not file_path[0] == '.':
file_path = f'{self.config["rgb_dir"]}'+file_path
assert os.path.exists(file_path), f"{file_path} does not exist"
img = cv2.imread(file_path)
if img is None:
raise ValueError('Loaded image is None: {}'.format(file_path))
elif self.lmdb:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
image_bin = txn.get(file_path.encode())
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
img = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = cv2.resize(img, (size, size), interpolation=cv2.INTER_CUBIC)
return Image.fromarray(np.array(img, dtype=np.uint8))
def load_mask(self, file_path):
"""
Load a binary mask image from a file path and resize it to a specified resolution.
Args:
file_path: A string indicating the path to the mask file.
Returns:
A numpy array containing the loaded and resized mask.
Raises:
None.
"""
size = self.config['resolution']
if file_path is None:
return np.zeros((size, size, 1))
if not self.lmdb:
if not file_path[0] == '.':
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
if os.path.exists(file_path):
mask = cv2.imread(file_path, 0)
if mask is None:
mask = np.zeros((size, size))
else:
return np.zeros((size, size, 1))
else:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
image_bin = txn.get(file_path.encode())
if image_bin is None:
mask = np.zeros((size, size,3))
else:
image_buf = np.frombuffer(image_bin, dtype=np.uint8)
# cv2.IMREAD_GRAYSCALE为灰度图,cv2.IMREAD_COLOR为彩色图
mask = cv2.imdecode(image_buf, cv2.IMREAD_COLOR)
mask = cv2.resize(mask, (size, size)) / 255
mask = np.expand_dims(mask, axis=2)
return np.float32(mask)
def load_landmark(self, file_path):
"""
Load 2D facial landmarks from a file path.
Args:
file_path: A string indicating the path to the landmark file.
Returns:
A numpy array containing the loaded landmarks.
Raises:
None.
"""
if file_path is None:
return np.zeros((81, 2))
if not self.lmdb:
if not file_path[0] == '.':
file_path = f'./{self.config["rgb_dir"]}\\'+file_path
if os.path.exists(file_path):
landmark = np.load(file_path)
else:
return np.zeros((81, 2))
else:
with self.env.begin(write=False) as txn:
# transfer the path format from rgb-path to lmdb-key
if file_path[0]=='.':
file_path=file_path.replace('./datasets\\','')
binary = txn.get(file_path.encode())
landmark = np.frombuffer(binary, dtype=np.uint32).reshape((81, 2))
landmark=self.rescale_landmarks(np.float32(landmark), original_size=256, new_size=self.config['resolution'])
return landmark
def to_tensor(self, img):
"""
Convert an image to a PyTorch tensor.
"""
return T.ToTensor()(img)
def normalize(self, img):
"""
Normalize an image.
"""
mean = self.config['mean']
std = self.config['std']
normalize = T.Normalize(mean=mean, std=std)
return normalize(img)
def data_aug(self, img, landmark=None, mask=None, augmentation_seed=None):
"""
Apply data augmentation to an image, landmark, and mask.
Args:
img: An Image object containing the image to be augmented.
landmark: A numpy array containing the 2D facial landmarks to be augmented.
mask: A numpy array containing the binary mask to be augmented.
Returns:
The augmented image, landmark, and mask.
"""
# Set the seed for the random number generator
if augmentation_seed is not None:
random.seed(augmentation_seed)
np.random.seed(augmentation_seed)
# Create a dictionary of arguments
kwargs = {'image': img}
# Check if the landmark and mask are not None
if landmark is not None:
kwargs['keypoints'] = landmark
kwargs['keypoint_params'] = A.KeypointParams(format='xy')
if mask is not None:
mask = mask.squeeze(2)
if mask.max() > 0:
kwargs['mask'] = mask
# Apply data augmentation
transformed = self.transform(**kwargs)
# Get the augmented image, landmark, and mask
augmented_img = transformed['image']
augmented_landmark = transformed.get('keypoints')
augmented_mask = transformed.get('mask',mask)
# Convert the augmented landmark to a numpy array
if augmented_landmark is not None:
augmented_landmark = np.array(augmented_landmark)
# Reset the seeds to ensure different transformations for different videos
if augmentation_seed is not None:
random.seed()
np.random.seed()
return augmented_img, augmented_landmark, augmented_mask
def __getitem__(self, index, no_norm=False):
"""
Returns the data point at the given index.
Args:
index (int): The index of the data point.
Returns:
A tuple containing the image tensor, the label tensor, the landmark tensor,
and the mask tensor.
"""
# Get the image paths and label
image_paths = self.data_dict['image'][index]
label = self.data_dict['label'][index]
if not isinstance(image_paths, list):
image_paths = [image_paths] # for the image-level IO, only one frame is used
image_tensors = []
landmark_tensors = []
mask_tensors = []
augmentation_seed = None
for image_path in image_paths:
# Initialize a new seed for data augmentation at the start of each video
if self.video_level and image_path == image_paths[0]:
augmentation_seed = random.randint(0, 2**32 - 1)
# Get the mask and landmark paths
mask_path = image_path.replace('frames', 'masks') # Use .png for mask
landmark_path = image_path.replace('frames', 'landmarks').replace('.png', '.npy') # Use .npy for landmark
# Load the image
try:
image = self.load_rgb(image_path)
except Exception as e:
# Skip this image and return the first one
print(f"Error loading image at index {index}: {e}")
return self.__getitem__(0)
image = np.array(image) # Convert to numpy array for data augmentation
# Load mask and landmark (if needed)
if self.config['with_mask']:
mask = self.load_mask(mask_path)
else:
mask = None
if self.config['with_landmark']:
landmarks = self.load_landmark(landmark_path)
else:
landmarks = None
# Do Data Augmentation
if self.mode == 'train' and self.config['use_data_augmentation']:
image_trans, landmarks_trans, mask_trans = self.data_aug(image, landmarks, mask, augmentation_seed)
else:
image_trans, landmarks_trans, mask_trans = deepcopy(image), deepcopy(landmarks), deepcopy(mask)
# To tensor and normalize
if not no_norm:
image_trans = self.normalize(self.to_tensor(image_trans))
if self.config['with_landmark']:
landmarks_trans = torch.from_numpy(landmarks)
if self.config['with_mask']:
mask_trans = torch.from_numpy(mask_trans)
image_tensors.append(image_trans)
landmark_tensors.append(landmarks_trans)
mask_tensors.append(mask_trans)
if self.video_level:
# Stack image tensors along a new dimension (time)
image_tensors = torch.stack(image_tensors, dim=0)
# Stack landmark and mask tensors along a new dimension (time)
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
landmark_tensors = torch.stack(landmark_tensors, dim=0)
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
mask_tensors = torch.stack(mask_tensors, dim=0)
else:
# Get the first image tensor
image_tensors = image_tensors[0]
# Get the first landmark and mask tensors
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmark_tensors):
landmark_tensors = landmark_tensors[0]
if not any(m is None or (isinstance(m, list) and None in m) for m in mask_tensors):
mask_tensors = mask_tensors[0]
return image_tensors, label, landmark_tensors, mask_tensors
@staticmethod
def collate_fn(batch):
"""
Collate a batch of data points.
Args:
batch (list): A list of tuples containing the image tensor, the label tensor,
the landmark tensor, and the mask tensor.
Returns:
A tuple containing the image tensor, the label tensor, the landmark tensor,
and the mask tensor.
"""
# Separate the image, label, landmark, and mask tensors
images, labels, landmarks, masks = zip(*batch)
# Stack the image, label, landmark, and mask tensors
images = torch.stack(images, dim=0)
labels = torch.LongTensor(labels)
# Special case for landmarks and masks if they are None
if not any(landmark is None or (isinstance(landmark, list) and None in landmark) for landmark in landmarks):
landmarks = torch.stack(landmarks, dim=0)
else:
landmarks = None
if not any(m is None or (isinstance(m, list) and None in m) for m in masks):
masks = torch.stack(masks, dim=0)
else:
masks = None
# Create a dictionary of the tensors
data_dict = {}
data_dict['image'] = images
data_dict['label'] = labels
data_dict['landmark'] = landmarks
data_dict['mask'] = masks
return data_dict
def __len__(self):
"""
Return the length of the dataset.
Args:
None.
Returns:
An integer indicating the length of the dataset.
Raises:
AssertionError: If the number of images and labels in the dataset are not equal.
"""
assert len(self.image_list) == len(self.label_list), 'Number of images and labels are not equal'
return len(self.image_list)
if __name__ == "__main__":
with open('/data/home/zhiyuanyan/DeepfakeBench/training/config/detector/video_baseline.yaml', 'r') as f:
config = yaml.safe_load(f)
train_set = DeepfakeAbstractBaseDataset(
config = config,
mode = 'train',
)
train_data_loader = \
torch.utils.data.DataLoader(
dataset=train_set,
batch_size=config['train_batchSize'],
shuffle=True,
num_workers=0,
collate_fn=train_set.collate_fn,
)
from tqdm import tqdm
for iteration, batch in enumerate(tqdm(train_data_loader)):
# print(iteration)
...
# if iteration > 10:
# break